首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Yotpo构建零延迟数据湖实践

在Yotpo,我们有许多微服务和数据库,因此将数据传输到集中式数据湖中的需求至关重要。我们一直在寻找易于使用的基础架构(仅需配置),以节省工程师的时间。...在开始使用CDC之前,我们维护了将数据库表全量加载到数据湖中的工作流,该工作流包括扫描全表并用Parquet文件覆盖S3目录。但该方法不可扩展,会导致数据库过载,而且很费时间。...我们希望能够查询最新的数据集,并将数据放入数据湖中(例如Amazon s3[3]和Hive metastore[4]中的数据),以确保数据最终位置的正确性。...采用这种架构后,我们在数据湖中获得了最新、被完全监控的生产数据库副本。 基本思路是只要数据库中发生变更(创建/更新/删除),就会提取数据库日志并将其发送至Apache Kafka[5]。...使用数据湖最大的挑战之一是更新现有数据集中的数据。在经典的基于文件的数据湖体系结构中,当我们要更新一行时,必须读取整个最新数据集并将其重写。

1.7K30

【数据湖】在 Azure Data Lake Storage gen2 上构建数据湖

介绍 一开始,规划数据湖似乎是一项艰巨的任务——决定如何最好地构建数据湖、选择哪种文件格式、是拥有多个数据湖还是只有一个数据湖、如何保护和管理数据湖。...构建数据湖没有明确的指南,每个场景在摄取、处理、消费和治理方面都是独一无二的。...在之前的博客中,我介绍了数据湖和 Azure 数据湖存储 (ADLS) gen2 的重要性,但本博客旨在为即将踏上数据湖之旅的人提供指导,涵盖构建数据湖的基本概念和注意事项ADLS gen2 上的数据湖...数据湖结构——区域 这一定是数据湖社区中最常争论的话题,简单的答案是每个数据湖都没有单一的蓝图——每个组织都有自己独特的一组需求。...它最适合希望运行大规模即席查询、分析或高级分析但没有严格的时间敏感报告需求的内部分析师或数据科学家。

91710
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于Apache Hudi + Linkis构建数据湖实践

    我们的平台很早就部署了WDS全家桶给业务用户和数据分析用户使用。...近段时间,我们也调研和实现了hudi作为我们数据湖落地的方案,他帮助我们解决了在hdfs上进行实时upsert的问题,让我们能够完成诸如实时ETL,实时对账等项目。...hudi作为一个数据湖的实现,我觉得他也是一种数据存储方案,所以我也希望它能够由Linkis来进行管理,这样我们的平台就可以统一起来对外提供能力。....Linkis引入Hudi之后的一些优点和应用介绍 • 实时ETL 将hudi引入到Linkis之后,我们可以直接通过streamis编写实时ETL任务,将业务表近实时地落到hudi,用户看到的最新的数据将是分钟级别的最新数据...,而不是t-1或者几小时前的数据。

    92210

    基于 Apache Hudi 构建分析型数据湖

    对数据湖的需求 在 NoBrokercom[1],出于操作目的,事务数据存储在基于 SQL 的数据库中,事件数据存储在 No-SQL 数据库中。这些应用程序 dB 未针对分析工作负载进行调整。...它的一个组成部分是构建针对分析优化的数据存储层。Parquet 和 ORC 数据格式提供此功能,但它们缺少更新和删除功能。...数据索引 除了写入数据,Hudi 还跟踪特定行的存储位置,以加快更新和删除速度。此信息存储在称为索引的专用数据结构中。...我们从布隆过滤器开始,但随着数据的增加和用例的发展,我们转向 HBase 索引,它提供了非常快速的行元数据检索。 HBase 索引将我们的 ETL 管道的资源需求减少了 30%。...Schema写入器 一旦数据被写入云存储,我们应该能够在我们的平台上自动发现它。为此,Hudi 提供了一个模式编写器,它可以更新任何用户指定的模式存储库,了解新数据库、表和添加到数据湖的列。

    1.6K20

    【数据湖】塑造湖:数据湖框架

    大数据和数据湖的风险和挑战 大数据带来的挑战如下: 容量——庞大的数据量是否变得难以管理? 多样性——结构化表格?半结构化 JSON?完全非结构化的文本转储?...准确性——当数据量不同、来源和结构不同以及它们到达湖的速度不同时,我们如何保持准确性和准确性? 同时管理所有四个是挑战的开始。 很容易将数据湖视为任何事物的倾倒场。...这些数据可能都是完全相关和准确的,但如果用户找不到他们需要的东西,那么湖本身就没有价值。从本质上讲,数据淹没是指数据量如此之大,以至于您无法找到其中的内容。...框架 我们把湖分成不同的部分。关键是湖中包含各种不同的数据——一些已经过清理并可供业务用户使用,一些是无法辨认的原始数据,需要在使用之前进行仔细分析。...文件夹结构本身可以任意详细,我们自己遵循一个特定的结构: 原始数据区域是进入湖的任何文件的着陆点,每个数据源都有子文件夹。

    63820

    Apache Hudi +MinIO + HMS构建现代数据湖

    我们已经探索了[1] MinIO 和 Hudi 如何协同工作来构建现代数据湖。...这种兼容性代表了现代数据湖架构中的一个重要模式。 HMS集成:增强数据治理和管理 虽然 Hudi 提供开箱即用的核心数据管理功能,但与 HMS 集成增加了另一层控制和可见性。...以下是 HMS 集成如何使大规模 Hudi 部署受益: • 改进的数据治理:HMS 集中元数据管理,在整个数据湖中实现一致的访问控制、沿袭跟踪和审计。这可确保数据质量、合规性并简化治理流程。...hudiDF.select("language").distinct() uniqueLanguages.show() // Stop the Spark session System.exit(0) 构建云原生现代数据湖...Hudi、MinIO 和 HMS 无缝协作,为构建和管理大规模现代数据湖提供全面的解决方案。

    37710

    数据湖(一):数据湖概念

    数据湖概念一、什么是数据湖数据湖是一个集中式的存储库,允许你以任意规模存储多个来源、所有结构化和非结构化数据,可以按照原样存储数据,无需对数据进行结构化处理,并运行不同类型的分析对数据进行加工,例如:大数据处理...随着实时计算引擎的不断发展以及业务对于实时报表的产出需求不断膨胀,业界最近几年就一直聚焦并探索于实时数仓建设。...架构可以称为真正的实时数仓,目前在业界最常用实现就是Flink + Kafka,然而基于Kafka+Flink的实时数仓方案也有几个非常明显的缺陷,所以在目前很多企业中实时数仓构建中经常使用混合架构,没有实现所有业务都采用...Kafka无法支持高效的OLAP查询,大多数业务都希望能在DWD\DWS层支持即席查询的,但是Kafka无法非常友好地支持这样的需求。...在需要数据之前,没有定义数据结构和需求。数据处理模式在我们可以加载到数据仓库中的数据,我们首先需要定义好它,这叫做写时模式(Schema-On-Write)。

    1.5K94

    Uber基于Apache Hudi构建PB级数据湖实践

    什么是Apache Hudi Apache Hudi是一个存储抽象框架,可帮助组织构建和管理PB级数据湖,通过使用upsert和增量拉取等原语,Hudi将流式处理带到了类似批处理的大数据中。...在没有其他可行的开源解决方案可供使用的情况下,我们于2016年末为Uber构建并启动了Hudi,以构建可促进大规模快速,可靠数据更新的事务性数据湖。...当Hudi毕业于Apache软件基金会下的顶级项目时,Uber的大数据团队总结了促使我们构建Hudi的各种考虑因素,包括: 如何提高数据存储和处理效率? 如何确保数据湖包含高质量的表?...Apache Hudi场景包括数据分析和基础架构运行状况监视 Hudi通过对数据集强制schema,帮助用户构建更强大、更新鲜的数据湖,从而提供高质量的见解。...Hudi使Uber和其他公司可以使用开放源文件格式,在未来证明其数据湖的速度,可靠性和交易能力,从而消除了许多大数据挑战,并构建了丰富而可移植的数据应用程序。

    99320

    基于Apache Hudi在Google云平台构建数据湖

    为了处理现代应用程序产生的数据,大数据的应用是非常必要的,考虑到这一点,本博客旨在提供一个关于如何创建数据湖的小教程,该数据湖从应用程序的数据库中读取任何更改并将其写入数据湖中的相关位置,我们将为此使用的工具如下...: • Debezium • MySQL • Apache Kafka • Apache Hudi • Apache Spark 我们将要构建的数据湖架构如下: 第一步是使用 Debezium 读取关系数据库中发生的所有更改...Apache Hudi 是一个开源数据管理框架,用于简化增量数据处理和数据管道开发,该框架更有效地管理数据生命周期等业务需求并提高数据质量。...结论 可以通过多种方式构建数据湖。我试图展示如何使用 Debezium[6]、Kafka[7]、Hudi[8]、Spark[9] 和 Google Cloud 构建数据湖。...本文提供了有关如何使用上述工具构建基本数据管道的基本介绍!

    1.8K10

    Notion数据湖构建和扩展之路

    要管理这种快速增长,同时满足关键产品和分析用例不断增长的数据需求,尤其是我们最近的 Notion AI 功能,意味着构建和扩展 Notion 的数据湖。以下来介绍我们是如何做到的。...随着对线上和线下数据需求的增加,我们意识到构建一个专用的数据基础设施来处理离线数据而不干扰在线流量至关重要。...由于这些挑战,我们开始探索构建我们的数据湖。 构建和扩展 Notion 的内部数据湖 以下是我们构建内部数据湖的目标: • 建立一个能够大规模存储原始数据和处理数据的数据存储库。...Notion 数据湖将主要关注可以容忍几分钟到几小时延迟的离线工作负载。 数据湖的高级设计 自 2022 年以来,我们一直使用如下所示的内部数据湖架构。...然后利用这些原始数据,我们可以进行转换、非规范化(例如,每个块的树遍历和权限数据构建)和扩充,然后将处理后的数据再次存储在 S3 中或下游系统中,以满足分析和报告需求,以及 AI、搜索和其他产品要求。

    14310

    构建云原生数据仓库和数据湖的最佳实践

    数据仓库、数据湖和数据流的概念和架构数据库可以为解决业务问题提供补充。本文介绍了如何使用原生云技术构建现代数据堆栈。...构建云原生数据仓库和数据湖的最佳实践 以下探索一下通过数据仓库、数据湖、数据流和湖屋构建原生云数据分析基础设施的经验和教训: 教训1:在正确的地方处理和存储数据 首先要问问自己:数据的用例是什么?...(3)云原生数据仓库的最佳实践超越SaaS产品 构建原生云数据仓库或数据湖是一个庞大的项目。它需要数据摄入、数据集成、与分析平台的连接、数据隐私和安全模式等等。...超出数据仓库或数据湖范围的完整企业架构甚至更加复杂。必须应用最佳实践来构建一个有弹性的、可扩展、弹性的和具有成本效益的数据分析基础设施。...服务等级协议(SLA)、延迟和正常运行时间在业务域中有非常不同的需求。最好的方法是为工作选择合适的工具。业务单元和应用程序之间的真正解耦允许专注于解决特定的业务问题。

    1.1K10

    数据湖

    语义能力方面比较吃力 >架构复杂,涉及多个系统协调,靠调度系统来构建任务依赖关系 2.Lambda 架构 >同时维护实时平台和离线平台两套引擎,运维成本高 >实时离线两个平台需要维护两套框架不同但业务逻辑相同代码...>支持实现分钟级到秒级的数据接入,实效性和Kappa 架构比略差 下面我们看下网上对于主流数据湖技术的对比 ?...从上图中我们可以看到hudi和iceberg的功能较齐全,下面我们将从如下几方面来 1.元数据打通 2.flink读写数据湖 3.增量更新 4.对事务的支持 5.对于写入hdfs小文件合并的支持 6.湖中的数据和仓中的数据的联通测试...7.高效的回缩能力 8.支持Schema变更 9.支持批流读写 9.支持批流读写 说完了技术体现,下面我们在简单说一下数据湖和数仓的理论定义 数据湖 其实数据湖就是一个集中存储数据库,用于存储所有结构化和非结构化数据...数据湖可用其原生格式存储任何类型的数据,这是没有大小限制。数据湖的开发主要是为了处理大数据量,擅长处理非结构化数据。 我们通常会将所有数据移动到数据湖中不进行转换。

    63930

    使用Apache Hudi构建大规模、事务性数据湖

    关于Nishith Agarwal更详细的介绍,主要从事数据方面的工作,包括摄取标准化,数据湖原语等。 ? 什么是数据湖?数据湖是一个集中式的存储,允许以任意规模存储结构化和非结构化数据。...接着看看对于构建PB级数据湖有哪些关键的要求 ?...第六个需求:法律合规/数据删除(更新&删除) 近年来随着新的数据保护法规生效,对数据保留有了严格的规定,需要删除原始记录,修复数据的正确性等,当需要在PB级数据湖中高效执行合规性时非常困难,如同大海捞针一般...Data Lake必须为其数据集提供有效的存储管理 支持事务写入 必须提供严格的SLA,以确保原始表和派生表的数据新鲜度 任何数据合规性需求都需要得到有效的支持 支持唯一键约束 有效处理迟到的数据 ?...在真实场景中,会将ETL链接在一起来构建数据管道,问题会变得更加复杂。 ?

    2.1K11

    基于湖仓一体构建数据中台架构

    数据仓库存储结构化的数据,适用于快速的BI和决策支撑,而数据湖可以存储任何格式的数据,往往通过挖掘能够发挥出数据的更大作为,因此在一些场景上二者的并存可以给企业带来更多收益。...湖仓一体,又被称为Lake House,其出发点是通过数据仓库和数据湖的打通和融合,让数据流动起来,减少重复建设。...Lake House架构最重要的一点,是实现数据仓库和数据湖的数据/元数据无缝打通和自由流动。...伴随数字化在各行各业的深化发展,企业不但需要面向业务的「交易核心」,同时更需要构建面向企业全量数据价值的「数据核心」。...不同于传统「交易核心」往往仅针对特定业务系统解决其交易需求不同的是,「数据核心」需要汇聚从多个「交易核心」产生的实时交易流水数据,为全企业跨业务的多个系统提供高并发的实时对客全量数据查询及数据探索分析能力

    94310

    从数据湖到元数据湖——TBDS新一代元数据湖管理

    所以在Data+AI 时代,面对AI非结构化数据和大数据的融合,以及更复杂跨源数据治理能力的诉求,TBDS开发了第三阶段的全新一代统一元数据湖系统。...02、新一代元数据湖管理方案 TBDS全新元数据湖系统按照分层主要有统一接入服务层、统一Lakehouse治理层、统一元数据权限层、统一Catalog模型连接层。...统一接入服务对外提供开放标准的API接口给用户或引擎对元数据湖的各种操作,提供JDBC、REST API和Thrift协议三种方式访问元数据。...特别在大数据结构化数据更好实现了湖仓元数据的统一和联动。 03、统一元数据权限 在Hadoop体系的优化 我们通过统一元数据系统的统一权限插件完成了不同数据源权限的管理。...的元数据库表,也要在Ranger上为每个不同的计算引擎创建相同语义的权限策略和Ranger Plugin插件,Ranger Plugin会定时同步该组件的全量策略到本地内存构建策略树进行本地鉴权,授权通过

    55610

    【数据湖仓】数据湖和仓库:范式简介

    此外,云提供商有大量的原生组件可供构建。还有多种第三方工具可供选择,其中一些是专门为云设计的,可通过云市场获得。 工具自然倾向于强调自己在分析集成中的作用。当您尝试选择最佳工具集时,这通常会令人困惑。...博客系列 数据湖和仓库第 1 部分:范式简介 数据湖和仓库第 2 部分:Databricks 和雪花 数据湖和仓库第 3 部分:Azure Synapse 观点 两种范式:数据湖与数据仓库 基于一些主要组件的选择...,云分析解决方案可以分为两类:数据湖和数据仓库。...集中式数据湖元数据管理工具越来越多,但使用它们取决于开发过程。技术很少强制这样做。 结论:数据湖和数据仓库 在这篇文章中,我们讨论了数据仓库和基于数据湖的解决方案的基本方法或范式的差异。...原则上,您可以纯粹在数据湖或基于数据仓库的解决方案上构建云数据分析平台。 我见过大量基于数据湖工具的功能齐全的平台。在这些情况下,可以使用特定于用例的数据库数据集市来提供信息,而根本不需要数据仓库。

    62110

    漫谈“数据湖”

    这对于数据探索类需求,带来很大便利,可以直接得到原始数据。 数据湖统一企业内部各个业务系统数据,解决信息孤岛问题。为横跨多个系统的数据应用,提供一种可能。...这就得需要一个灵活、敏捷、经济且相对轻松的解决方案,然而这些都不是数据仓库的强项。而且当有新的需求提出时,传统数据仓库又难以快速随之变化。...在构建数据湖的基础设施时,云计算技术可以发挥很大作用。此外,像AWS、MicroSoft、EMC等均提供了云端的数据湖服务。...4.5 数据湖 vs 数据治理 传统方式下,数据治理工作往往是在数据仓库中。那么在构建企业级数据湖后,对数据治理的需求实际更强了。...5.3 数据计算 数据湖需要提供多种数据分析引擎,来满足数据计算需求。需要满足批量、实时、流式等特定计算场景。此外,向下还需要提供海量数据的访问能力,可满足高并发读取需求,提高实时分析效率。

    1.7K30

    【数据湖】扫盲

    什么是数据湖 数据湖是一种以原生格式存储各种大型原始数据集的数据库。您可以通过数据湖宏观了解自己的数据。 原始数据是指尙未针对特定目的处理过的数据。数据湖中的数据只有在查询后才会进行定义。...为什么出现了数据湖的概念 数据湖可为您保留所有数据,在您存储前,任何数据都不会被删除或过滤。有些数据可能很快就会用于分析,有些则可能永远都派不上用场。...数据从多种来源流入湖中,然后以原始格式存储。 数据湖和数据仓库的差别是什么? 数据仓库可提供可报告的结构化数据模型。这是数据湖与数据仓库的最大区别。...数据湖架构 数据湖采用扁平化架构,因为这些数据既可能是非结构化,也可能是半结构化或结构化,而且是从组织内的各种来源所收集,而数据仓库则是把数据存储在文件或文件夹中。数据湖可托管于本地或云端。...他们还可以利用大数据分析和机器学习分析数据湖中的数据。 虽然数据在存入数据湖之前没有固定的模式,但利用数据监管,你仍然可以有效避免出现数据沼泽。

    57230
    领券