学习
实践
活动
工具
TVP
写文章

python实现数据血缘关系,by networkx

最近在进行数据逆向分析,无业务无界面无数据库的情况下,想通过对存储过程中关于输出输入表的分析快速了解业务的核心问题,然后再对核心业务进行逆向回溯。 其实问题很简单,一个存储过程会有多个输入表和输出表,一个存储过程的输出表可能会成为另外一个存储过程的输入表,从而将整个数据库的业务逻辑串接起来,基于长链会形成血缘关系,基于关联会形成聚合。 这里需要构造的节点数据和连接数据,节点数据是输入表和输出表剔重后的编号和标签,连接数据通过存储过程标签将节点数据进行关联。 代码之前有测试过,所以这次实现无太多需要讲解。 #!

60721

Atlas血缘分析数据仓库中的实战案例

Hi,我是王知无,一个大数据领域的原创作者。 目录 一、应用 1.1 执行SQL 1.2 手写的数据地图 1.3 atlas血缘分析 1.4 打标签 1.4.1 CLASSIFICATION分类 1.4.2 GLOSSARY词汇表 1.5 字段搜索 4.1 Hive Hook 4.1.1 设置Atlas配置目录 4.1.2 设置环境变量 4.1.3 把压缩包上传 4.1.4 解压包 4.1.5 添加Hive的第三方依赖包 4.1.6 导入Hive数据 1.3 atlas血缘分析 说明:通过对比,Atlas能够更加准确地解析所有脚本SQL语句,在全局角度能够看到上下游关系,不过自己手动维护的好处的是能够更加方便地迭代维护。 1.5 字段搜索 1.5.1查看表字段 1.5.2 追踪字段关系 说明:强大地血缘关系可以直接查看出整条字段的数据链路。

1.1K11
  • 广告
    关闭

    【11.11特惠】腾讯云大数据产品,19.9元秒杀尝鲜,首购2.5折起!

    移动推送、商业智能分析BI、Elasticsearch、智能数据分析、云数仓Doris,多款产品年终钜惠,19.9元秒杀,新客首购2.5折起,老客回购2.8折起!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    你了解你的数据吗(元婴篇):血缘分析

    本篇将引入一个新的概念:数据血缘分析 ,或者叫血统分析。 0x01 血缘分析 那么什么是数据血缘分析呢?在这里我们不给出它的严谨的定义,仅从感觉上来解释一下这个东西。 上面的过程是数据血缘分析的过程。 0x02 数据血缘分析有什么用??? 咋一看,其实感觉数据血缘分析并没有什么用,其实就我个人感觉来看,其实的确没什么用,特别是在你的业务规模比较小并且数据合作不频繁的情况下,基本不需要数据血缘分析。 其实总的说来,数据血缘能帮你更好地理解自己的数据! 0x03 关于实现 实现的话不打算在这里多聊,因为数据血缘一般是和元数据管理紧紧绑定起来的,在设计元数据管理系统的时候应该要考虑到数据血缘的内容。 关于元数据系统的设计可以参考这篇博客《别人家的元数据系统是怎么设计的》。 这里随便提一句,数据血缘的管理可以考虑使用图数据实现,用图数据的好处是更容易展现表之间的关系。

    6.2K83

    Atlas血缘分析数据仓库中的实战案例

    目录 一、应用 1.1 执行SQL 1.2 手写的数据地图 1.3 atlas血缘分析 1.4 打标签 1.4.1 CLASSIFICATION分类 1.4.2 GLOSSARY词汇表 1.5 字段搜索 4.1 Hive Hook 4.1.1 设置Atlas配置目录 4.1.2 设置环境变量 4.1.3 把压缩包上传 4.1.4 解压包 4.1.5 添加Hive的第三方依赖包 4.1.6 导入Hive数据 JOIN dw.dw_zbchannel tp ON t2.pageid = tp.channelid ) t3 ) t4 WHERE rk = 1; 1.2 手写的数据地图 1.3 atlas血缘分析 说明:通过对比,Atlas能够更加准确地解析所有脚本SQL语句,在全局角度能够看到上下游关系,不过自己手动维护的好处的是能够更加方便地迭代维护。 1.5 字段搜索 1.5.1查看表字段 1.5.2 追踪字段关系 说明:强大地血缘关系可以直接查看出整条字段的数据链路。

    46610

    数据血缘关系:图数据库Neo4j存储实现

    背景 元数据管理包含内容较广,本篇介绍其中非常重要的数据血缘关系存储实现数据血缘关系 通过对oracle、greenplumn、mysql、hive、presto、spark和flink多引擎等等覆盖,实现生成数据血缘关系、数据价值分析、影响度分析数据存储生命周期管理。 总结 本篇讲述了数据血缘关系使用Neo4j存储,并给出例子实现创建血缘关系创建语句,实际应用中数据血缘关系是通过数据加载进去的。 没讲这些血缘关系的元数据如何从SQL或应用中解析获取的,有机会笔者再另分享。 数据血缘关系在元数据管理中是非常重要的内容,其不仅展示数据来龙去脉,还定位异常数据影响范围。 如影响度分析,也是较为血缘关系应用的一部分,其用来分析数据的下游流向。当系统进行升级改造时,能动态数据结构变更、删除及时告知下游系统。

    2K30

    数据分析如何实现降本增效?

    可作为数据分析,该如何实现降本增效?今天系统讲解下。 这就需要做精细化的数据分析。 商品分析和用户分析不同,需要看商品从上市开始,全生命周期数据。 小结 综上可见,想实现降本增效,不是只靠一条数据两条公式那么一计算,就咣当得出一个神威无敌大将军建议。 降本增效的本质,是通过数据手段,量化业务行为,核算业务成本,监控业务收益。量化才是最重要的一步。 一个更深层的问题 在知识星球内,有同学问了我一个灵魂问题:“我们公司的运营做事根本不和数据分析通气,数据分散在各个平台收集不上来,每天核算进销存和财务数据已经累死了,老板还觉得数据好大,能一下分析出很厉害的结论

    10411

    如何实现数据分析的工业化?

    导读:顾名思义,工业化意味着自动化,能够实现事半功倍的效果。以前,农民用牛犁一块地需要花费几天时间,但现在用拖拉机只需要几个小时。同样,现在企业可以也用先进的算法“耕耘”大片的“数据田地”。 流水线方法的基础是建立一套支持数据分析的流程。这是一种协作的方法,需要跨职能合作和C级高管努力推动公司上下参与其中。但从数据中获取见解的流程如何实现自动化? 如果想使数据分析工业化,就需要对数据分析及受其驱动的经营活动采取同样的质量控制措施。你制定的任何解决方案都应该考虑以下几点: 1. 数据管理:这里涉及的考虑是,数据科学家在创建分析数据集时,应该确保数据一脉相承,提供适当的治理,避免陷入不可识别资产的数据沼泽。 随着数据分析工具的激增,企业将继续寻求庞大数据集的力量,因为有数据就有见解,有见解就有价值。但想要做到这一点,就必须把工业化的准则融入到数据分析中。

    527100

    如何数据分析指标分析数据含义

    鸭鸭在开始之前给鸭仔们介绍几个数据分析经常用到的指标: ? 平均数:数据当中有异常数值,平均值是不准确的,平均数有时候用来愚弄大众的智商。 这个数据集下载链接 Baby Goods Info Data-数据集-阿里云天池 ? 题目要求:我们根据父母的购物行为预测儿童的信息,或者根据儿童的年龄预测父母的行为。 首先鸭鸭认为数据分析的第一步一定要明确自己要解决什么问题: 第一层: 婴幼儿出生时间分布及原因分析; 婴幼儿商品购买数量分布及对商品畅按畅销度划分; 从性别、年龄、时间(月份)3个维度分析对婴幼儿商品购买数量的影响 【数据分析】 这也是最关键的一步了,这里给大家几个思路。 1.鸭鸭比较婴幼儿年龄和妈妈购买时间可以知道妈妈在婴幼儿哪个年龄段购买,还有些妈妈是在未出生前就已经购买了。 5.鸭鸭可以分析某大类产品的购买量,如果可以从property当中获取商品价格,那么在结合其性质可以分析妈妈们选择婴幼儿商品当中必需品的选择或者说易消耗品的选择的价格考量。

    28541

    mysql 数据分析如何实现日报、周报、月报和年报?

    我已经掌握了mysql中按天统计,如何实现按年、按月、按周统计呢? 1、已掌握的技能:按天统计 实现以天为统计周期很简单。 具体来说,date() 函数可返回时间数据的日期,即仅有年月日,没有时分秒信息。结合 group by 可实现按天统计。 以天为统计周期的数据指标非常多,随便举例,比如每日新增注册用户数。 当数据量跨年时,它会把每年相同周数或月数的数据加在一起。如何实现某年某月和某年某周呢?已有知识储备去推理,没找到答案,那就直接搜索吧! 数据返回结果不对呀?并不是预期的今年第几周。小写的w返回的是本周第几天,大写的W返回的是周几的英文名。如何拿到今年第几周这个值,实现周报的统计周期呢? users group by 年周 order by 年周 6、小结 总结一下,mysql中可通过date_format() 和 concat(),week()等函数可完成数据分析中常用的月报

    1.1K30

    数据如何分析如何进行数据处理及分析

    如何分析数据?从以下六个方面考虑 1.可视化分析 不管是数据分析专家还是普通用户,数据可视化都是数据分析工具的基本要求。可视化可以直观地显示数据,让数据自己说话,让用户看到结果。 它承担着集成业务系统数据的任务,为业务智能系统提供数据提取,转换和加载(ETL)。查询和访问数据以提供用于在线数据分析数据挖掘的数据平台。 如何进行数据处理和分析? 因此,建议公司在执行大数据分析计划时对项目目标进行准确的分析,这更容易实现业务目标。 而如何在这些数据库之间执行负载平衡和分片也需要深入思考。 步骤2:导入和预处理数据 收集过程只是构建大数据平台的第一步。在确定需要收集哪些数据之后,下一步需要统一处理不同来源的数据。 步骤4:价值挖掘 与以前的统计和分析过程不同,数据挖掘通常没有任何预设的主题,主要是基于对现有数据的各种算法的计算,从而达到预测的效果,以实现一些高级的数据分析需求目的。

    32420

    如何用 Python 分析数据

    序言 本片主要给大家介绍一下如何利用Python分析数据。 假设你的客户(可能是你的领导,也可能就是你自己),给你发来一份销售数据,他希望你分析分析,看看如何提高销量。 我们可以把函数中的 y 理解为目标,把 x 理解为数据,把 f 理解为实现目标的方法,要找到合适的方法不容易,这需要对业务有深刻的理解。 你的分析观点往往来自于你的分析思维,所以正确地运用好分析思维是非常重要的。 参考《数据分析的 8 种思维》,首先,我们可以运用对比思维,对数据进行有效的对比,这是数据分析工作的核心方法之一。 对于「如何提高销量」这样一个大问题,我们很难直接回答,可以试着细分为小问题,例如:哪种促销方式效果更好?我们的用户希望得到什么? 提出建议 你怀着激动的心情,开始撰写数据分析报告。此时你要记住,数据分析报告的重点,不是那些花里胡哨的图表,而是提出有效的行动建议。 除非将数据分析用于做出更好的决策,否则,数据分析将毫无用处。

    42220

    如何入门数据分析

    如今,大多数公司都意识到数据驱动的商业策略的价值,因此需要有数据分析才能的人来洞察不断收集的信息。随着我们继续将现实世界数字化,对分析师的需求只会增加。 可以了解之前讲解的《数据分析为什么火了》。 如果你刚开始学习数据分析,那么怎么入门呢?其实各大招聘网站的数据分析职位就是一个很好的参考。那么数据分析师究竟需要哪些技能呢? 和SQL一样,R和Python可以处理Excel不能处理大数据量的事情。它们是强大的统计编程语言,用于对大数据集执行高级分析和预测分析。 五、机器学习 现在AI和预测分析数据科学领域最热门的两个主题,数据分析师不只是单单对历史数据的统计操作了,对机器学习的理解已被确定为分析师的工作之一。 但是我们是数据分析师,不是算法工程师,我们首先要考虑的就是分析结果和我们之前的用户故事有什么联系,我们要找到这部分联系,解释给老板。那么如何来培养这种能力呢?

    38331

    Airbnb | 如何应用Druid实现数据实时批量分析

    挑战和未来的改进 虽然Druid在我们的数据平台架构中为我们提供了很好的服务,但随着我们在公司内部使用Druid的增长,存在新的挑战。 段文件是Druid数据的基本存储单元,包含准备服务的预聚合数据。在Airbnb,我们遇到了一些场景,其中大量的数据源有时需要完全重新计算,导致大量的段文件需要一次加载到集群上。 但是,在我们的使用中,产生较大段的数据输入量(由Hadoop工作者运行摄取任务)是如此之高,以至于Hadoop作业运行太长时间处理该数据,并且由于各种原因很多次会失败。 结论 Druid是一个专为可扩展性,可维护性和性能而设计的大数据分析引擎。其良好的因素架构可轻松管理和扩展Druid部署,其优化的存储格式可实现低延迟分析查询。 相信在不久的将来,Druid将成为最重要的OLAP实时分析引擎之一! 本文作者:Pala Muthiah and Jinyang Li,由数极客联合创始人吴江林翻译并整理!

    46910

    如何通过数据仓库实现湖仓一体数据分析

    在PB级数据实时交互式分析、HTAP、ETL、BI报表生成等业务场景,ADB PG都有着独特的技术优势。作为一个数据仓库产品,ADB PG是如何具备湖仓一体分析能力呢? 本文将会介绍ADB PG如何基于PG外表、打造数据分析能力。 ADB PG继承了PG的外表(Foreign Table)功能,目前ADB PG的湖仓一体能力主要是基于外表打造的。 用户可以灵活地将ADB PG应用于数据存储、交互式分析、ETL等不同领域,可以在单个实例中实现多种数据分析功能。即可以用ADB PG完成数据分析的核心流程,也可以作为众多环节中的一环去搭建数据链路。 不过,外表数据分析依赖于外部SDK和网络IO来实现数据读写,由于网络本身的特性与本地磁盘有巨大差异,因此需要在技术层面与本地存储不同、需要不同的性能优化方案。 这里简单介绍ORC格式的外表的谓词下推的实现方案。一个ORC文件按数据行分成若干个Stripe组成,Stripe中数据按列式存储。

    39140

    Apache Hadoop大数据平台,金融行业搭建大数据平台,数据采集、分析、处理如何实现

    数据平台可以对这些数据进行集中的数据分析管理,然后对不同类型的客户进行用户标签设定。 通过大数据应用,金融机构可以逐渐实现完全个性化客户服务的目标。 2.风险管理与风险控制 中小企业贷款风险评估。 3.金融行业精准营销管理 利用大数据分析平台,对多样化的用户数据(基本信息数据、财富信息数据、教育数据、消费数据、浏览数据、购买路径、客户的微博、客户的微信、客户的购买行为)进行挖掘、追踪、分析,以提升精准营销水平 舆情分析:银行可以通过网络爬虫,在互联网上对:B2B平台、社区、论坛、微博、博客等等多平台数据进行爬取,搜索有关金融机构的信息,通过舆情分析,来对采集到的数据进行进一步的分析,看看哪些是正面信息,那些是负面信息 5.金融产品管理 利用大数据分析平台,金融机构能够获取客户的反馈信息,及时了解、获取和把握客户的需求,通过对数据进行深入分析,可以对产品进行更加合理的设置。

    70410

    如何在Python中实现RFM分析

    RFM分析 RFM分析是根据客户活跃程度和交易金额贡献,进行客户价值细分的一种方法; 可以通过R,F,M三个维度,将客户划分为8种类型。 ? ? RFM分析过程 1.计算RFM各项分值 R_S,距离当前日期越近,得分越高,最高5分,最低1分 F_S,交易频率越高,得分越高,最高5分,最低1分 M_S,交易金额越高,得分越高,最高5 分,最低1分 2.归总RFM分值 RFM=100*R_S+10*F_S+1*M_S 3.根据RFM分值对客户分类 RFM分析前提,满足以下三个假设,这三个假设也是符合逻辑的 1. 我们了解了RFM的分析原理后,下面来看看如何在Python中用代码实现: import numpy import pandas data = pandas.read_csv( 'D:\\PDA

    1.7K100

    如何实现一款毫秒级实时数据分析引擎

    本文将详细描述系统中的实时分析查询引擎 Boussole Engine 作为多维数据分析的核心一环,是如何通过对引擎的设计支撑毫秒级实时数据分析结果返回。 1. 我们在初期调研了一些主流时序数据分析产品,它们主要分为以下几类: 类 SQL 的时序数据查询方式,主要有 TimescalesDB[1] 和基于 InfluxQL 实现的 InfluxDB[2],核心思路是通过 要想做到实时分析查询,在项目初期就应该对未来能达到的效果有明确规划。我们希望不论有多少原始数据上报,在查询响应速度方面都能达到毫秒级,下文将详细描述我们是如何设计系统并达到这一目标的。 2. 存储模型 在了解如何实现查询流程前,先介绍一下 Boussole 底层的多维时序数据存储模型。 后面的章节将详细描述如何处理掉这些脏维度,并且使它们不在数据查询时返回。 3. 分析查询流程 时序数据的查询流程概括来说是用户输入一个 Query,系统返回一系列带标签的曲线组合。

    35640

    【观点】数据分析如何数据

    在做这样的活动,最好是拿到前一个月或者两个月的历史数据。对电商来说,从这里面要去分析各个品类的销售情况,那个品类销量最大,那个品类销量最小,每月或者每周的平均增长率和符合增长率是多少。 通过原始数据把上面的这些指标分析出来之后,就可以看到哪些品类是优势品类,不用促销就可有很大的量,哪些是弱势的品类等等,这样可以确定出来拿那个品类出来做促销。 通过分析数据,发现其中的规律,那么则可实现数据驱动运营,驱动产品,驱动市场。 近几年数据分析在互联网领域非常受到重视,无论是社区型产品,工具类产品,还是电子商务,都越来越把数据作为核心资产。确实数据分析的越深,越能够是在精细化的运营,在很多时候工作的重点才有据可依。 同时要有数据分析的思维,不仅仅是互联网行业几乎所有的行业每天都会产生大量的数据。所以最重要的是有这种数据粉丝的思维,知道怎么通过数据分析找出规律,发现问题,对将来做出预测及拆解。

    43630

    如何用VOSviewer分析CNKI数据

    学会了用VOSviewer分析Web of Science数据后,想不想知道如何用它分析中文文献?本文用CNKI数据做样例,一步步教你实现步骤。 ? 疑问 自从写了《如何快速梳理领域文献》一文后,不少读者留言或者来信问我一个问题: 如何可视化分析中文文献呢? ? 但是我在博士毕业论文里用Citespace分析过中文文献,所以就用我最有把握的答案做了答复。 ? 不过,随着问这个问题的人越来越多,我也来了兴趣:VOSviewer到底能否分析中文文献数据呢? 我们从标题寻找其中更有可能使用中文文献数据的论文,于是找到了这篇《2010年中国档案学研究热点的知识图谱分析》。 讨论 读过本文后,你是否了解如何用VOSviewer分析中文文献数据?你之前做中文文献可视化分析时,用过不同的方法吗?它们是否更有效和便捷呢?欢迎留言,把你的经验分享给大家,我们一起交流讨论。

    2K41

    【解析】数据分析如何看懂数据

    对于数据,有一个共识就要会看数据,通过合理及透彻的分析来驱动产品,运营及市场策略的调整。 但是这些知识看数据的中级阶段,高级阶段则是通过庞大的多维度的数据分析,能够预测到未来一个季度,半年甚至一年的业务走势,当然预测可以有一定的偏差在里面。 数据分析 一、用户的维度   从用户的维度来看网站数据,其实就是通常所说的网站分析层面。 对于电子商务网站来说,用户的维度的分析分析用户来源,运营的维度那就分析收入情况了。第一个数据点是每日的订单数,这个是要看电商网站整体的销售情况也是最重要的一个数据指标。 第四个数据点在退货率,这个数据很重要,如果有大量的退货对于网站来说损失非常大,同时还要分析退货的原因是什么。

    46770

    扫码关注腾讯云开发者

    领取腾讯云代金券