卷积自动编码器(Convolution Auto-Encoders, CAE)(2011)
全卷积网络是一种面向特定应用(图像语义分割)的卷积神经网络,其结构图如下图所示:
与经典的CNN在卷积层之后使用全连接层得到固定长度的特征向量进行分类...(全联接层+softmax输出)不同,FCN可以接受任意尺寸的输入图像,采用反卷积层对最后一个卷积层的feature map进行上采样, 使它恢复到输入图像相同的尺寸,从而可以对每个像素都产生了一个预测...卷积自编码器属于传统自编码器的一个特例,它使用卷积层和池化层替代了原来的全连接层,卷积自编码器能很好的保留二维信号的空间信息。...使自编码器可以训练更高层数
卷积自编码器 2011 将卷积层引入自编码器 更好的处理图片数据,得到更好的效果
变分自编码器 2014 相当于在传统自编码器的隐层表达上增加一个对隐变量的约束,提出了一种将概率模型和神经网络结构的方法...,但是由于中间部分是比较复杂的卷机核结构,无法进行有效的可视化
4.VAE方法在图像生成领域有出色的表现,将中间的隐变量约束为正太分布的形式,十分方便的通过生成器完成图像生成.
5.在研究角度,VAE方法将概率方法引入神经网络的计算体系中