首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【学术】将吴恩达的第一个深度神经网络应用于泰坦尼克生存数据集

这篇文章包括了神经网络在kaggle泰坦尼克生存数据集上的应用程序。它帮助读者加深他们对神经网络的理解,而不是简单地执行吴恩达代码。泰坦尼克生存数据集就是可以随意使用的一个例子。...下载kaggle泰坦尼克生存数据集,并将其保存在与“数据集”文件夹相同的位置。...你可以安全地删除所有其他单元格,除了输入和L-Layer_model单元格; 运行两个单元格。 4.加载泰坦尼克生存数据集。 5.预先处理数据集。...将生成的预测保存为csv文件,然后将文件提交给kaggle。...这一预测将使你跻身于参与者的前30%。 ? 提交预测文件会使你进入前三名,并帮助你适应kaggle竞赛 你已经将神经网络应用于你自己的数据集了。现在我鼓励你使用网络中的迭代次数和层数。

1.4K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    利用 Spark 和 scikit-learn 将你的模型训练加快 100 倍

    在神经网络和深度学习的空间之外,我们发现我们的训练模型的大部分计算时间并没有花在训练单个数据集的单个模型上。相反,大部分时间都花在使用元估计器在数据集上训练模型的多次迭代上。...它还具有诸如树集合和网格搜索之类的元估计器,以及对多分类问题的支持。 ? 分布在不同的维度上 如上所示,Spark ML 将针对分布在多个执行器上的数据来训练单个模型。...当数据量很大,以至于无法存入一台机器上的内存时,这种方法可以很好地工作。然而,当数据量很小时,在单台机器上这可能会比 scikit-learn 的学习效果差。...分布预测——具有 Spark 数据帧的拟合 scikit-learn 估计器的预测方法。这使得带有 scikit-learn 的大规模分布式预测可以在没有 Spark 的情况下进行。...scikit-learn 中实现,并且可以直接应用于 sk-dist 元估计。

    2.1K10

    基于Python的机器学习工具包:Scikit-learn

    本文将详细介绍Scikit-learn库的特点、常见功能和应用场景,并通过具体案例演示其在Python数据分析中的具体应用。图片1....1.2 特点Scikit-learn具有以下特点:简单易用:Scikit-learn提供了简洁一致的API设计,使用户能够轻松地使用各种机器学习算法和工具。...丰富的数据预处理功能:Scikit-learn提供了多种数据预处理方法,如特征缩放、特征选择、数据清洗等,帮助用户准备好用于训练的数据集。...数据预处理:Scikit-learn提供了多种数据预处理方法,如缺失值处理、标准化、归一化等,帮助用户准备好用于训练的数据集。2....3.2 无监督学习任务Scikit-learn也适用于无监督学习任务,如聚类、降维等。用户可以使用Scikit-learn提供的聚类算法将数据样本划分为不同的群组,或使用降维方法减少数据的维度。

    69510

    使用Scikit-Learn pipeline 减少ML项目的代码量并提高可读性

    在交叉验证中,安全pipeline有助于避免将测试数据中的统计信息泄漏到训练好的模型中 下面Scikit-learn pipelines流程图 ?...,首先从定义转换对象开始,然后将这些对象拟合(FIT)到训练数据中(从数据中学习),然后应用这些转换 (TRANSFORM)功能训练数据 接下来,我们在转换后的数据上训练模型,现在我们将所有这些转换再一次应用于测试集...这样可以防止数据泄漏并将相同的转换应用于这两组数据。 ? 得到结果如下 ?...3)列转换器:ColumnTransformer用于将上述转换应用于数据帧中的正确列,我将它们传递给我,这是我在上一节中定义的数字和分类特征的两个列表。...结论 在本文中,我尝试向您展示了pipeline的功能,特别是Scikit-learn库提供的pipeline的功能,一旦理解,后者将是非常通用且易于实现的。

    91830

    解决sklearn.exceptions.NotFittedError: This StandardScaler instance is not fitted

    # load_dataset()是自定义加载数据集的函数# 将数据集分为训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y,...特点scikit-learn具有以下特点:简单易用:scikit-learn以简单和一致的界面提供各种机器学习算法和工具,使得用户可以更容易地使用这些算法和工具。...丰富的功能:scikit-learn涵盖了许多常用的机器学习任务,如分类、回归、聚类、降维、模型选择、特征提取等。...它还提供了大量的数据预处理、评估和模型选择的功能,使得用户能够方便地完成整个机器学习流程。高效性:scikit-learn使用Cython作为底层实现,对算法进行了高度优化,从而实现了高速的计算性能。...常见用途scikit-learn可以应用于各种机器学习任务和应用领域,包括但不限于:分类和回归:使用各种算法进行二元分类、多类分类和回归问题。聚类:将数据分为不同的组别,发现潜在的数据结构。

    54410

    如何在 GPU 上加速数据科学

    我们认为使用大型模型架构和相同数据在XLNet 和BERT之间进行公平的比较研究具有重要的科学价值。 编译 | Skura 编辑 | Pita  数据科学家需要算力。...如果您没有足够的 RAM 来容纳这样的数据集,那么您可以使用分块功能,它很方便,可以一次处理一个数据块。 GPUs vs CPUs:并行处理 有了大量的数据,CPU 就不会切断它了。...今天的数据科学没有什么不同,因为许多重复的操作都是在大数据集上执行的,库中有 pandas、Numpy 和 scikit-learn。这些操作也不太复杂,无法在 GPU 上实现。...,类似于我们将应用于 DBSCAN 的两个圆。...一个好的经验法则是,较大的数据集将更加受益于 GPU 加速。在 CPU 和 GPU 之间传输数据有一些开销时间——对于较大的数据集,开销时间变得更「值得」。

    2.5K20

    用 GPU 加速 TSNE:从几小时到几秒

    图2.在时尚用例中使用的TSNE。 在图2中,TSNE被应用于由60,000件衣物图像组成的时装数据集。这对于将“相似”服装聚集的自然分组很有用。...这意味着PCA的组成部分通常具有一定的含义,而TSNE不再按重要性排序,其创建的领域之外也不具有可解释性。在CPU上,通常建议用PCA将维度减小到50,然后再将其输入TSNE以提高性能。...Scikit-learn的TSNE提供了熟悉的,易于使用的界面,但会遇到可伸缩性问题。 例如,一个60,000个示例数据集可能需要1个小时才能在CPU上的scikit-learn中收敛。...在具有204,800个样本和80个特征的数据集上,cuML需要5.4秒,而Scikit学习需要将近3个小时,加速了2,000倍。...让我们比较scikit-learn的API和RAPIDS cuML的API。 本示例使用scikit-learn的数字数据集。 scikit-learn API: ?

    6.5K30

    圣诞快到了,可视化一个圣诞老人。

    Mapper算法已成功应用于患者的细分,从而大大改善了靶向疗法。对两个不同的数据集执行了相同的分析,并提供了一致的输出,证明了算法的稳定性。...实际上,该算法分为三个步骤: 过滤:使用过滤函数f将数据点映射到ℝ中。 覆盖:以重叠的间隔覆盖过滤器值。 聚类:对于每个间隔,将聚类算法应用于在该间隔中映射的观测值。...Giotto是一个开源项目,其中包含giotto-learn,这是一个易于使用的拓扑数据分析工具包。它使用类似于Scikit-learn的API,并通过管道功能提供了一种适合Mapper的便捷方法。...算法应用于包含从圣诞老人形状(即所谓的“圣诞老人云”)采样的20,000个三维数据点的数据集。...通过点的平均颜色为每个节点着色: 使用默认参数,圣诞老人可能会通过烟囱。 该图不能代表数据集,因为无法区分圣诞老人身体的任何特征。

    82900

    Python机器学习:通过scikit-learn实现集成算法

    scikit-learn的基本功能主要分为六大部分:分类、回归、聚类、数据降维、模型选择和数据预处理。...(scikit-learn对MLP的支持在0.18版之后增加) scikit-learn是一个开源项目,遵守BSD协议,可以将项目应用于商业开发。目前主要由社区成员自发进行维护。...本文只简单地介绍一下相关的集成算法。在这里采用Pima Indians数据集,并用10折交叉验证来分离数据,再通过相应的评估矩阵来评估算法模型。...2.1装袋决策树 装袋算法在数据具有很大的方差时非常有效,最常见的例子就是决策树的装袋算法。下面将在scikit-learn中通过BaggingClassifier实现分类与回归树算法。...由于梯度提升算法在每次更新数据集时都需要遍历整个数据集,计算复杂度较高,于是有了一个改进算法——随机梯度提升算法,该算法一次只用一个样本点来更新回归系数,极大地改善了算法的计算复杂度。

    1.1K100

    SciPyCon 2018 sklearn 教程(上)

    简单示例:鸢尾花数据集 作为简单数据集的一个例子,我们将看一下 scikit-learn 存储的鸢尾花数据。 数据包括三种不同鸢尾花的测量值。...幸运的是,这是机器学习中常见的模式,scikit-learn 具有预先构建的函数,可以将数据分成训练和测试集。 在这里,我们使用 50% 的数据来训练,50% 来测试。...应用于鸢尾花数据集。...将 PCA 降维用于可视化 考虑数字数据集。 它无法在单个 2D 绘图中可视化,因为它具有 64 个特征。 我们将使用sklearn示例中的示例提取 2 个维度用于可视化。...每种算法都会做出不同的假设,结果的质量和可解释性将取决于你的目标是否满足假设。 对于 K 均值聚类,模型是所有簇具有相等的球形方差。 通常,无法保证聚类算法找到的结构,与你感兴趣的内容有任何关系。

    1.2K10

    Python机器学习:Scikit-Learn教程

    现在您对将要使用的数据非常了解! 可视化您的数据:主成分分析(PCA) 但是没有其他方法可视化数据吗? 由于digits数据集包含64个功能,因此这可能是一项具有挑战性的任务。...在这种情况下,你谈到维度的诅咒。因为具有大量维度也意味着您的数据点几乎远离其他所有点,这使得数据点之间的距离无法提供信息。 不过不要担心,因为维度的诅咒不仅仅是计算特征数量的问题。...请注意如何明确告诉模型只保留两个组件。这是为了确保您具有要绘制的二维数据。...从那以后,您可以考虑将哪种算法应用于数据集,以获得您认为可以获得的结果。 提示:您对数据越熟悉,就越容易评估特定数据集的用例。同样适用于寻找合适的机器算法。...,以将其应用于数据集的第二部分。

    2.2K61

    Python 数据科学手册 5.2 Scikit-Learn 简介

    将模型应用于新数据: 对于监督学习,我们通常使用predict()方法预测未知数据的标签。 对于无监督学习,我们经常使用transform()或predict()方法来转换或推断数据的属性。...特别是,我们还没有将模型应用于任何数据:Scikit-Learn API 非常清楚模型选择和模型对数据应用之间的区别。 3....在这种情况下,这相当于一维数组的简单重塑: X = x[:, np.newaxis] X.shape # (50, 1) 4. 使用模型来拟合数据 现在是时候将模型应用于数据了。...在探索是否可以通过更复杂的模型做出改进之前,它通常是一个用作基准分类的良好模型。 我们想对之前没有看到的数据进行评估,因此我们将数据分成训练集和测试集。...就像之前的 Iris 数据那样,我们将数据分为训练和测试集,之后拟合高斯朴素贝叶斯模型。

    36410

    10种聚类算法及python实现

    这些示例用于将粘贴复制到您自己的项目中,并将方法应用于您自己的数据。 1.库安装 首先,让我们安装库。不要跳过此步骤,因为你需要确保安装了最新版本。...0.22.1 2.聚类数据集 我们将使用 make _ classification ()函数创建一个测试二分类数据集。数据集将有1000个示例,每个类有两个输入要素和一个群集。...我们可以清楚地看到两个不同的数据组在两个维度,并希望一个自动的聚类算法可以检测这些分组。 已知聚类着色点的合成聚类数据集的散点图 接下来,我们可以开始查看应用于此数据集的聚类算法的示例。...然后创建一个散点图,并由其指定的群集着色。在这种情况下,我无法取得良好的结果。 数据集的散点图,具有使用亲和力传播识别的聚类 4.聚合聚类 聚合聚类涉及合并示例,直到达到所需的群集数量为止。...然后创建一个散点图,并由其指定的群集着色。在这种情况下,我无法在此数据集上获得合理的结果。

    83330

    Python机器学习:通过scikit-learn实现集成算法

    scikit-learn的基本功能主要分为六大部分:分类、回归、聚类、数据降维、模型选择和数据预处理。...(scikit-learn对MLP的支持在0.18版之后增加) scikit-learn是一个开源项目,遵守BSD协议,可以将项目应用于商业开发。目前主要由社区成员自发进行维护。...2.1 装袋决策树 装袋算法在数据具有很大的方差时非常有效,最常见的例子就是决策树的装袋算法。下面将在scikit-learn中通过BaggingClassifier实现分类与回归树算法。...之后再对采样之后的数据使用完全分裂的方式建立决策树,这样决策树的某一个叶子节点要么是无法继续分裂的,要么所有样本都指向同一个分类。...由于梯度提升算法在每次更新数据集时都需要遍历整个数据集,计算复杂度较高,于是有了一个改进算法——随机梯度提升算法,该算法一次只用一个样本点来更新回归系数,极大地改善了算法的计算复杂度。

    1.2K21

    Python中的sklearn入门

    Python中的sklearn入门介绍scikit-learn(简称sklearn)是一个广泛使用的Python机器学习库,它提供了丰富的功能和工具,用于数据挖掘和数据分析。...可以使用​​train_test_split​​函数将数据集分割为训练集和测试集:pythonCopy codefrom sklearn.model_selection import train_test_splitX_train...对于数据集大小超过内存容量的情况,sklearn可能无法进行处理。缺乏深度学习支持:sklearn主要关注传统的机器学习算法,如决策树、支持向量机、朴素贝叶斯等。...XGBoost:XGBoost是一个梯度提升树的机器学习库,它提供了强大的集成学习功能,可以应用于回归、分类和排名等任务。相对于sklearn中的决策树算法,XGBoost在精度和性能上有所提升。...LightGBM:LightGBM是另一个梯度提升树的机器学习库,它具有高效的训练和预测速度,适用于大规模数据集。与XGBoost相比,在一些性能方面有进一步的改进。

    38530

    教你在Python中用Scikit生成测试数据集(附代码、学习资料)

    测试数据集是一个小型的人工数据集,它可以让你测试机器学习算法或其它测试工具。 测试数据集的数据具有定义明确的性质,如线性或非线性,这允许您探索特定的算法行为。...它们很小,可以很容易在两个维度中进行可视化。 它们也可以被简单地放大。 我建议在开始使用新的机器学习算法或开发新的测试工具时使用测试数据集。...scikit-learn是一个用于机器学习的Python库,它提供了生成一系列测试问题的功能。 在本教程中,我们将介绍一些为分类和回归算法生成测试问题的例子。...下面的例子生成一个带有三类斑点的二维数据集,作为一个多类分类预测问题。 每个观察都有两个输入和0、1或2个类值。 ? 完整代码如下 ?...笪洁琼,中南财大MBA在读,目前研究方向:金融大数据。目前正在学习如何将py等其他软件广泛应用于金融实际操作中,例如抓包预测走势(不会预测股票/虚拟币价格)。

    2.8K70

    Python中基于网格搜索算法优化的深度学习模型分析糖尿病数据

    先决条件 要遵循本教程,您应该对Python或其他某种编程语言有基本的了解。您最好也具有机器学习的基本知识,但这不是必需的。除此之外,本文是初学者友好的,任何人都可以关注。...网格搜索可自动执行该过程,因为它仅获取每个参数的可能值并运行代码以尝试所有可能的组合,输出每个组合的结果,并输出可提供最佳准确性的组合。 网格搜索实施 让我们将网格搜索应用于实际应用程序。...我们将使用Pima印度糖尿病数据集,该数据集包含有关患者是否基于不同属性(例如血糖,葡萄糖浓度,血压等)的糖尿病信息。使用Pandas read_csv()方法,您可以直接从在线资源中导入数据集。...(inplace=True) # Drop all rows with missing values 以下脚本将数据分为变量和标签集,并将标准化应用于数据集: # Transform and display...因为我们只对看到Grid Search的功能感兴趣,所以我没有进行训练/测试拆分,我们将模型拟合到整个数据集。 在下一节中,我们将开始了解Grid Search如何通过优化参数使生活变得更轻松。

    1.4K20

    Python中基于网格搜索算法优化的深度学习模型分析糖尿病数据

    先决条件 要遵循本教程,您应该对Python或其他某种编程语言有基本的了解。您最好也具有机器学习的基本知识,但这不是必需的。除此之外,本文是初学者友好的,任何人都可以关注。...网格搜索可自动执行该过程,因为它仅获取每个参数的可能值并运行代码以尝试所有可能的组合,输出每个组合的结果,并输出可提供最佳准确性的组合。 网格搜索实施 让我们将网格搜索应用于实际应用程序。...我们将使用Pima印度糖尿病数据集,该数据集包含有关患者是否基于不同属性(例如血糖,葡萄糖浓度,血压等)的糖尿病信息。使用Pandas read_csv()方法,您可以直接从在线资源中导入数据集。...(inplace=True) # Drop all rows with missing values 以下脚本将数据分为变量和标签集,并将标准化应用于数据集: # Transform and display...因为我们只对看到Grid Search的功能感兴趣,所以我没有进行训练/测试拆分,我们将模型拟合到整个数据集。 在下一节中,我们将开始了解Grid Search如何通过优化参数使生活变得更轻松。

    1K10

    Pick 一下?Python 机器学习实用技巧

    对于机器学习/人工智能,Python是一款优秀的语言吗? 除非你是一个研究复杂算法的纯理论证明的博士研究员,否则你将主要使用现有的机器学习算法,并将它们应用于解决新问题。这就需要你懂得如何编程。...Pandas 基于 Numpy 数组构建,因此保留了计算速度快的特性,并且提供了很多数据工程领域的功能,包括: 可以读/写多种不同的数据格式; 选择数据子集; 跨行列计算; 查找并填充缺失的数据; 将操作应用到数据中的独立组...; 将数据重组成不同的形式; 合并多个数据集; 高级的时序功能; 通过 Matplotlib 和 Seaborn 实现可视化; ?...绘制单个超参数在训练集和验证集的分数,以确定某些超参数估计量是过拟合还是欠拟合的做法是非常有用的。Scikit-learn 内置方法请移步于此。 ?...数据集生成器:Scikit-learn 包含各种随机样本生成器,可用于构建给定大小和复杂度的人工数据集。它具有分类,聚类,回归,矩阵分解和多种测试的函数。 ?

    48230
    领券