无法提交并发Hadoop作业可能由多种原因导致。以下是对这一问题的基础概念解释、可能的原因、解决方案以及相关优势和类型的概述。
Hadoop是一个开源框架,用于存储和处理大规模数据集。它允许使用简单的编程模型在分布式环境中跨计算机集群进行数据分布式处理。并发Hadoop作业指的是同时运行多个Hadoop任务以提高处理效率。
mapred-site.xml
、core-site.xml
等配置文件,确保作业调度器和资源管理器的参数设置合理。优势:
应用场景:
public class WordCount {
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
请根据实际情况调整上述解决方案和代码示例,以确保它们符合您的具体需求和环境。
没有搜到相关的文章
领取专属 10元无门槛券
手把手带您无忧上云