首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

插入数据透视表的4种方式

一 普通表插入 这是我们常见的普通表 也就是输入标题文字数字就是的表 依次点击[插入]→[数据透视表] 最后点击确定就会生成透视表啦 ↓↓↓下面是动图 注意,这个过程中可能会出现缺少标题错误...这种情况下一般是在标题行有单元格为空 检查下,填入标题就好 二 超级表插入 这里说的超级表 是你点击的时候上面会多出一个菜单栏的表中表 这个插入透视表更简单 直接在菜单点击[透过数据透视表汇总...]即可 ↓↓↓下面是动图 三 外部数据源插入 这一步需要你先设置好PowerQuery 然后和第一个一样的步骤 [插入]→[数据透视表] 只是在弹窗选择了第2个选项'使用外部数据源' 选择你的连接...,点击确定就好了 ↓↓↓下面是动图 四 模型插入 这一步的前提是需要你提前在Excel里面建模 (如果都会建模了应该早就会插入透视表了吧(╯‵□′)╯︵┻━┻) 然后和第一个一样的步骤 [插入]→...[数据透视表] 只是在弹窗选择了第3个选项'使用此工作簿的数据模型' 点击确定就好 ↓↓↓下面是动图 以上

1.9K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    thinkphp5.1中无法插入数据到数据库

    今天的解决的问题困扰了我几天了,期间问舍友也是没有搞清楚原理,现在回想起来,一部分的原因或许是hubilder的问题,暂时不清楚,但是今天我换成sublime text后验证器什么的都运行正常了,然而在注册数据插入数据库的地方还是会报...后面就想着request::post到的数据可以在控制台输出,那我就重写一个数组赋值上去,然后调用Db::table这样的类型将数据插入进数据库中,但随后又发现验证器什么的都没有用了,逻辑混乱·····...最后的方法:查手册,添加数据里发现了 Db::name('zh_user')->strict(false)->insert($data); 不存在的字段会自动抛弃,试试,成功了!!...发现问题所在,基本就是数据库表和request回的数组不匹配的原因吧。。。

    1.9K10

    数据透视表入门

    今天跟大家分享有关数据透视表入门的技巧! 数据透视表是excel附带功能中为数不多的学习成本低、投资回报率高、门槛低上手快的良心技能!...然后我们将利用几几步简单的菜单操作完成数据透视表的配置环境: 首先将鼠标放在原数据区域的任一单元格,选择插入——透视表; 在弹出的菜单中,软件会自动识别并完成原数据区域的选区工作。 ?...在右侧的数据透视表字段菜单中,分上下布局,上面的带选择字段,下侧是字段将要在透视表中的出现的位置。...如果你想对比多列数据之间的差异等,也可以通过计算字段方式添加新字段,并设置显示方式。 ? ? 由于本例只有一个数值变量,所以无法计算新字段。...以上已经讲解了 数据透视表中的基础功能,当然,数据透视表功能之强大远远不止这些,如果是以后与人力、财务等岗位打交道的筒子们,这个还是要好好学的,弄不好那一天就会用到了~

    3.6K60

    快速在Python中实现数据透视表

    这条推文很有趣,我能理解,因为一开始,它们可能会令人困惑,尤其是在excel中。但是不用害怕,数据透视表非常棒,在Python中,它们非常快速和简单。数据透视表是数据科学中一种方便的工具。...如果你想要看到每个年龄类别的平均销售额,数据透视表将是一个很好的工具。它会给你一个新表格,显示每一列中每个类别的平均销售额。 让我们来看看一个真实的场景,在这个场景中,数据透视表非常有用。...数据集还有一些列,但我们只关心评级描述符。让我们下载这个数据集并将其导入到Jupyter Notebook。...PART 06 使用Pandas做一个透视表 Pandas库是Python中任何类型的数据操作和分析的主要工具。...成熟游戏在这些类别中很少有暴力元素,青少年游戏也有一些这种类型的暴力元素,但比“E+10”级别的游戏要少。 PART 07 用条形图可视化数据透视表 数据透视表在几秒钟内就给了我们一些快速的信息。

    3K20

    数据透视表多表合并

    今天跟大家分享有关数据透视表多表合并的技巧!...以下是合并步骤: 新建一个汇总表(可以在本工作薄新建也可以在新建的工作薄建立) 插入——数据透视表向导(一个需要自己添加的菜单,如果在菜单中找不到就到自定义功能区中去添加) 以上步骤也可以通过快捷键完成...此时软件会生成一个默认的透视表样式,需要我们自己对透视表结构、字段做细微调整。 ? 将页字段名重命名为地区,将行标签命名为类别(双击或者在左上角名称框中命名) ?...如果你想让地区字段进入到透视表的行位置,也很简单,把地区字段拖入行(类别位置之前)。 ? 表间合并(工作薄内)就是这么简单。...合并步骤: 与工作薄内的表间合并差不多,首先插入——数据透视表向导(快捷键:Alt+d,p) 选择多重合并计算字段——创建自定义字段。 ? 将两个工作薄中的四张表全部添加到选定区域。 ? ?

    9.6K40

    pivottablejs|在Jupyter中尽情使用数据透视表!

    大家好,在之前的很多介绍pandas与Excel的文章中,我们说过「数据透视表」是Excel完胜pandas的一项功能。...Excel下只需要选中数据—>点击插入—>数据透视表即可生成,并且支持字段的拖取实现不同的透视表,非常方便,比如某招聘数据制作地址、学历、薪资的透视表 而在Pandas中制作数据透视表可以使用pivot_table...pivottablejs 现在,我们可以使用pivottablejs,可以让你在Jupyter Notebook中,像操作Excel一样尽情的使用数据透视表!...Notebook中任意的拖动、筛选来生成不同的透视表,就像在Excel中一样,并且支持多种图表的即时展示 还等什么,用它!...pandas的强大功能与便捷的数据透视表操作,可以兼得之! -END-

    3.8K30

    Python数据透视表与透视分析:深入探索数据关系

    在Python中,有多个库可以用来创建和操作数据透视表,其中最常用的是pandas库。 下面我将介绍如何使用Python中的pandas库来实现数据透视表和透视分析。...下面是一些常用的操作: 筛选数据:可以基于数据透视表中的特定值或条件筛选出我们感兴趣的数据。...filtered_data = pivot_table[pivot_table['category'] == 'A'] 计算汇总统计量:可以对数据透视表中的行、列或整个表格进行统计计算,比如求和、平均值等...column_means = pivot_table.mean(axis=0) table_total = pivot_table.sum().sum() 可视化:可以使用matplotlib或其他可视化库将数据透视表中的数据进行可视化...import matplotlib.pyplot as plt pivot_table.plot(kind='bar') plt.show() 通过以上步骤,我们可以利用Python中的数据透视表和透视分析

    24210

    Mysql实现获取自增id插入到其他表中

    现在有这样一个需求,就是我向A表中插入一条数据,id是自增的。...插入之后,还需要向B表中插入一条数据,但是B表中需要保存的数据中要使用刚刚A表自增后的id, 这个其实是一个比较常见的需求,就是两张表之间的一个关联,如果用程序来执行也是很容易实现。...比如我就在用sql执行之后,获取A的id插入到B表中 实现方式如下: insert into A (id,name,code) values (null, "zhagnsan", "zs"); // 注意...A表的id要设置为自增,给null值即可 set @id = @@IDENTITY; // 使用id变量保存刚刚自增生成的id insert into B (id,a_id,name) values...(null, @id, "lisi"); // 使用变量获取A表Id 上面是用自定义变量的形式进行保存的,如果你只是想查一下是多少,可以直接使用: select @@IDENTITY; 好了,如果对你有帮助

    4K30

    mysql实现获取自增id插入到其他表中

    现在有这样一个需求,就是我向A表中插入一条数据,id是自增的。...插入之后,还需要向B表中插入一条数据,但是B表中需要保存的数据中要使用刚刚A表自增后的id, 这个其实是一个比较常见的需求,就是两张表之间的一个关联,如果用程序来执行也是很容易实现。...比如我就在用sql执行之后,获取A的id插入到B表中 实现方式如下: insert into A (id,name,code) values (null, "zhagnsan", "zs"); // 注意...A表的id要设置为自增,给null值即可 set @id = @@IDENTITY; // 使用id变量保存刚刚自增生成的id insert into B (id,a_id,name) values...(null, @id, "lisi"); // 使用变量获取A表Id 上面是用自定义变量的形式进行保存的,如果你只是想查一下是多少,可以直接使用: select @@IDENTITY; 好了,如果对你有帮助

    3.5K20

    在pandas中使用数据透视表

    什么是透视表? 经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视表是一种汇总了更广泛表数据的统计信息表。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: ? 而数据透视表可以快速抽取有用的信息: ? pandas也有透视表?...pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...注意,在所有参数中,values、index、columns最为关键,它们分别对应excel透视表中的值、行、列: ?...参数aggfunc对应excel透视表中的值汇总方式,但比excel的聚合方式更丰富: ? 如何使用pivot_table? 下面拿数据练一练,示例数据表如下: ?

    2.8K40

    数据透视表多表合并|字段合并

    今天要跟大家分享的内容是数据透视表多表合并——字段合并!...因为之前一直都没有琢磨出来怎么使用数据透视表做横向合并(字段合并),总觉得关于表合并绍的不够完整,最近终于弄懂了数据透视表字段合并的思路,赶紧分享给大家!...数据仍然是之前在MS Query字段合并使用过的数据; 四个表,都有一列相同的学号字段,其他字段各不相同。 建立一个新工作表作为合并汇总表,然后在新表中插入数据透视表。...Ctrl+d 之后迅速按p,调出数据透视表向导 选择多重合并计算选项: ? 选择自定义计算字段 ? 分别添加三个表区域,页字段格式设置为0(默认)。 ?...此时已经完成了数据表之间的多表字段合并! ? 相关阅读: 数据透视表多表合并 多表合并——MS Query合并报表

    7.7K80

    技术|数据透视表,Python也可以

    19 2019-01 技术|数据透视表,Python也可以 对于熟悉Excel的小伙伴来说,学习Python的时候就按照没个功能在Python中如何实现进行学习就可以啦~ LEARN MORE ?...对于习惯于用Excel进行数据分析的我们来说,数据透视表的使用绝对是排名仅次于公式使用的第二大利器。特别是在数据预处理的时候,来一波透视简直是初级得不能再初级的操作了。...接下来就给大家讲一下如何在Python中实现数据透视表的功能。 ? pivot ? pd.pivot_table 这就是实现数据透视表功能的核心函数。显而易见,这个函数也是基于Pandas的。...在使用这个功能之前,需要先import pandas as pd哦~ pivot这个单词本身就已经告诉我们这个函数实现的功能类似于数据透视表(数据透视:data pivot) 需要指定的参数也和Excel...我们先回顾一下使用Excel进行数据透视表的操作过程: 首先,选中希望进行数据透视的数据,点击数据透视表,指定数据透视表的位置。 ? ?

    2.1K20
    领券