首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

PySpark UD(A)F 的高效使用

3.complex type 如果只是在Spark数据帧中使用简单的数据类型,一切都工作得很好,甚至如果激活了Arrow,一切都会非常快,但如何涉及复杂的数据类型,如MAP,ARRAY和STRUCT。...GROUPED_MAP UDF是最灵活的,因为它获得一个Pandas数据帧,并允许返回修改的或新的。 4.基本想法 解决方案将非常简单。...在UDF中,将这些列转换回它们的原始类型,并进行实际工作。如果想返回具有复杂类型的列,只需反过来做所有事情。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...Spark数据帧转换为一个新的数据帧,其中所有具有复杂类型的列都被JSON字符串替换。

19.7K31

PySpark 数据类型定义 StructType & StructField

PySpark StructType 和 StructField 类用于以编程方式指定 DataFrame 的schema并创建复杂的列,如嵌套结构、数组和映射列。...StructType是StructField的集合,它定义了列名、列数据类型、布尔值以指定字段是否可以为空以及元数据。...其中,StructType 是 StructField 对象的集合或列表。 DataFrame 上的 PySpark printSchema()方法将 StructType 列显示为struct。...如果要对DataFrame的元数据进行一些检查,例如,DataFrame中是否存在列或字段或列的数据类型;我们可以使用 SQL StructType 和 StructField 上的几个函数轻松地做到这一点...StructType、StructField 的用法,以及如何在运行时更改 Pyspark DataFrame 的结构,将案例类转换为模式以及使用 ArrayType、MapType。

1.3K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    详解Apache Hudi Schema Evolution(模式演进)

    : 新列名,强制必须存在,如果在嵌套类型中添加子列,请指定子列的全路径 示例 • 在嵌套类型users struct中添加子列col1,设置字段为users.col1...• 在嵌套map类型member mapstruct>中添加子列col1, 设置字段为member.value.col1 col_type :...Yes Yes 添加具有默认值的新复杂类型字段(map和array) Yes Yes 添加新的可为空列并更改字段的顺序 No No 如果使用演进模式的写入仅更新了一些基本文件而不是全部,则写入成功但读取失败...将嵌套字段的数据类型从 int 提升为 long Yes Yes 对于复杂类型(map或array的值),将数据类型从 int 提升为 long Yes Yes 在最后的根级别添加一个新的不可为空的列...作为一种解决方法,您可以使该字段为空 向内部结构添加一个新的不可为空的列(最后) No No 将嵌套字段的数据类型从 long 更改为 int No No 将复杂类型的数据类型从 long 更改为

    2.1K30

    RDD转为Dataset如何指定schema?

    与RDD进行互操作 Spark SQL支持两种不同方法将现有RDD转换为Datasets。第一种方法使用反射来推断包含特定类型对象的RDD的schema。...第二种创建Datasets的方法是通过编程接口,允许您构建schema,然后将其应用于现有的RDD。虽然此方法更详细,但它允许你在直到运行时才知道列及其类型的情况下去构件数据集。...使用反射推断模式 Spark SQL的Scala接口支持自动将包含case classes的RDD转换为DataFrame。Case class定义表的schema。...使用反射读取case class的参数名称,并将其变为列的名称。Case class也可以嵌套或包含复杂类型,如Seqs或Arrays。此RDD可以隐式转换为DataFrame,然后将其注册为表格。...3,使用SparkSession 提供的方法createDataFrame,将schema应用于Rows 类型的RDD。

    1.5K20

    sparksql 概述

    我们已经学习了Hive,它是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduc的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。...所有Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快! Spark SQL的特点 1)易整合 ? 2)统一的数据访问方式 ?...然而DataFrame更像传统数据库的二维表格,除了数据以外,还记录数据的结构信息,即schema。 同时,与Hive类似,DataFrame也支持嵌套数据类型(struct、array和map)。...而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。 DataFrame是为数据提供了Schema的视图。...5)Dataframe是Dataset的特列,DataFrame=Dataset[Row] ,所以可以通过as方法将Dataframe转换为Dataset。

    1.1K30

    浅谈离线数据倾斜

    通用的常规解决方案: 1.增加jvm内存,这适用于第一种情况(唯一值非常少,极少数值有非常多的记录值(唯一值少于几千)),这种情况下,往往只能通过硬件的手段来进行调优,增加jvm内存可以显著的提高运行效率...02 Hive数据倾斜 理解,首先 MCube 会依据模板缓存状态判断是否需要网络获取最新模板,当获取到模板后进行模板加载,加载阶段会将产物转换为视图树的结构,转换完成后将通过表达式引擎解析表达式并取得正确的值...2.2 数据倾斜的解决方案 1.参数调节 hive.map.aggr=true (是否在Map端进行聚合,默认为true),这个设置可以将顶层的聚合操作放在Map阶段执行,从而减轻清洗阶段数据传输和...03 Spark数据倾斜 理解,首先 MCube 会依据模板缓存状态判断是否需要网络获取最新模板,当获取到模板后进行模板加载,加载阶段会将产物转换为视图树的结构,转换完成后将通过表达式引擎解析表达式并取得正确的值...,加载阶段会将产物转换为视图树的结构,转换完成后将通过表达式引擎解析表达式并取得正确的值,通过事件解析引擎解析用户自定义事件并完成事件的绑定,完成解析赋值以及事件绑定后进行视图的渲染,最终将目 本文讲解了离线数据倾斜的基本概念

    53230

    Spark的Streaming和Spark的SQL简单入门学习

    我们已经学习了Hive,它是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。...所有Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快! c、Spark的特点:   易整合、统一的数据访问方式、兼容Hive、标准的数据连接。...然而DataFrame更像传统数据库的二维表格,除了数据以外,还记录数据的结构信息,即schema。同时,与Hive类似,DataFrame也支持嵌套数据类型(struct、array和map)。...在Spark SQL中SQLContext是创建DataFrames和执行SQL的入口,在spark-1.5.2中已经内置了一个sqlContext: 1.在本地创建一个文件,有三列,分别是id、name...、age,用空格分隔,然后上传到hdfs上 hdfs dfs -put person.txt / 2.在spark shell执行下面命令,读取数据,将每一行的数据使用列分隔符分割 val lineRDD

    95290

    Apache CarbonData 简介

    与 Spark 深度集成 CarbonData 已与 Apache Spark 深度集成,提供 Spark SQL 的查询优化技术并使用其代码生成功能。...这使得可以使用 Spark SQL 直接查询 CarbonData 文件,从而提供更快、更高效的查询结果。 支持全局字典编码 此功能有助于压缩表中的公共列,从而提高过滤查询的性能。...支持各种数据类型 Apache CarbonData 支持所有主要数据类型,包括 Array、Struct 和 Map 等复杂类型。...这个全局字典维护唯一列值到较短代理键的映射,然后将其用于存储和处理,从而使过滤等操作更快。 三、相对于较旧的大数据格式的重要性 传统的大数据格式(例如 CSV 和 Avro)存在一定的局限性。...多功能性: 与旧格式不同,CarbonData 支持各种数据类型,包括复杂的数据类型,如 Array、Struct 和 Map。这种多功能性使其能够有效地处理更广泛的数据处理任务。

    63020

    深入理解XGBoost:分布式实现

    RDD可以相互依赖,通过依赖关系形成Spark的调度顺序,通过RDD的操作形成整个Spark程序。 RDD有两种操作算子:转换(transformation)与行动(actions)。 1....转换操作包括map、flatMap、mapPartitions等多种操作,下面对常用的转换操作进行介绍。 map:对原始RDD中的每个元素执行一个用户自定义函数生成一个新的RDD。...本节将介绍如何通过Spark实现机器学习,如何将XGBoost4J-Spark很好地应用于Spark机器学习处理的流水线中。...首先通过Spark将数据加载为RDD、DataFrame或DataSet。如果加载类型为DataFrame/DataSet,则可通过Spark SQL对其进行进一步处理,如去掉某些指定的列等。...它的参数有以下2个。 1)min:默认为0.0,为转换后所有特征的上边界。 2)max:默认为1.0,为转换后所有特征的下边界。

    4.2K30

    【Hive】Hive 的基本认识

    所以 Hive 的本质是「将 HQL 转换成 MapReduce 程序」。...Compiler)、优化器(Optimizer)和执行器(Executor): 「解释器」:利用第三方工具将 HQL 查询语句转换成抽象语法树 AST,并对 AST 进行语法分析,比如说表是否存在、字段是否存在...、SQL 语义是否有误; 「编译器」:将 AST 编译生成逻辑执行计划; 「优化器」:多逻辑执行单元进行优化; 「执行器」:把逻辑执行单元转换成可以运行的物理计划,如 MapReduce、Spark。...Array() Hive 有三种复杂数据类型 ARRAY、MAP、STRUCT。...ARRAY 和 MAP 与 Java 中的 Array 和 Map 类似,而 STRUCT 与 C 语言中的 Struct 类似,它封装了一个命名字段集合,复杂数据类型允许任意层次的嵌套。

    1.5K40

    Hadoop与Spark等大数据框架介绍

    很早以前,当一台电脑无法存储这么庞大的数据时,采用的解决方案是使用NFS(网络文件系统)将数据分开存储。但是这种方法无法充分利用多台计算机同时进行分析数据。...Hive定义了一种类似SQL的查询语言(HQL),将SQL转化为MapReduce任务在Hadoop上执行,通常用于离线分析。...应用于即席查询(Ad-hoc query)、Spark Streaming应用于流式计算、 MLlib应用于机器学习、GraphX应用于图处理。...RDD拥有的操作比MR丰富的多,不仅仅包括Map、Reduce操作,还包括右图的filter、sort、join、save、count等操作,所以Spark比MR更容易方便完成更复杂的任务。...DAGScheduler把一个spark作业转换成成stage的DAG(Directed Acyclic Graph有向无环图),根据RDD和stage之间的关系,找出开销最小的调度方法,然后把stage

    1.5K10

    Apache Doris 2.1.0 版本发布:开箱盲测性能大幅优化,复杂查询性能提升 100%

    在部署好 SQL 转换服务后,用户只需通过会话变量 sql_dialect设置当前会话的 SQL 方言类型,即可使用对应的 SQL 方言进行查询。...相比于过去的 MySQL 协议,使用 Arrow Flight SQL 后,我们在 Apache Doris 中先将列存的 Block 转为同样列存的 Arrow RecordBatch,这一步转换效率非常高...而自动分区功能支持了在导入数据过程中自动检测分区列的数据对应的分区是否存在。如果不存在,则会自动创建分区并正常进行导入。...如:explode_map:支持 MAP 类型数据行转列(仅在新优化器中实现)支持 Map 类型 Explode行转列,将 Map 字段的 N 个 Key Value对展开成 N 行,每行的 Map 字段替换成...和 explode_outer 的目的一致,可以将当前 MAP 类型的列中是 NULL 的数据行展示出来。

    57911

    BigData--大数据技术之SparkSQL

    然而DataFrame更像传统数据库的二维表格,除了数据以外,还记录数据的结构信息,即schema。同时,与Hive类似,DataFrame也支持嵌套数据类型(struct、array和map)。...5) Dataframe是Dataset的特列,DataFrame=Dataset[Row] ,所以可以通过as方法将Dataframe转换为Dataset。...比如可以有Dataset[Car],Dataset[Person]. 7)DataFrame只是知道字段,但是不知道字段的类型,所以在执行这些操作的时候是没办法在编译的时候检查是否类型失败的,比如你可以对一个...String进行减法操作,在执行的时候才报错,而DataSet不仅仅知道字段,而且知道字段类型,所以有更严格的错误检查。...._ //创建聚合函数 val udaf = new MyAgeAvgClassFunction //将聚合函数转化为查询列 val avgCol = udaf.toColumn.name

    1.4K10

    大数据技术Spark学习

    我们已经学习了 Hive,它是将 Hive SQL 转换成 MapReduce 然后提交到集群上执行,大大简化了编写 MapReduce 的程序的复杂性,由于 MapReduce 这种计算模型执行效率比较慢...所以 Spark SQL 的应运而生,它是将 Spark SQL 转换成 RDD,然后提交到集群执行,执行效率非常快! ?...1.2.1 RDD RDD 弹性分布式数据集,Spark 计算的基石,为用户屏蔽了底层对数据的复杂抽象和处理,为用户提供了一组方便的数据转换与求值方法。...SQL 支持通过两种方式将存在的 RDD 转换为 DataSet,转换的过程中需要让 DataSet 获取 RDD 中的 Schema 信息。...第二种:是通过编程接口的方式将 Schema 信息应用于 RDD,这种方式可以处理那种在运行时才能知道列的情况下。

    5.3K60
    领券