学习
实践
活动
工具
TVP
写文章

Python 搭建车道智能检测系统

,进行多种边缘检测,然后对不同的检测结果进行融合以提取出道路图像,去除其他噪声。 然后根据提取的道路图像,再次利用边缘检测,提取车道线信息,然后利用透视变换将视角变成俯视图,其中透视变换矩阵的四个点由提取道路图像的角点组成。 图1 效果图 系统概述 1.1 对所给数据图像的车道线进行检测。 其中所给数据图像如下图可见: ? 图2 数据图像 下面我将对所用到的功能和原理将分别阐述。 图5 提取的道路图 (4)道路提取图像再次边缘检测: 利用拉普拉斯算子再次对处理后的图像进行边缘检测。并对其进行腐蚀和膨胀消除噪声。 ? 图6道路拉普拉斯边缘提取图 ? 图17 退出按钮点击效果图 代码功能实现 2.1 系统环境描述: 系统所使用的环境是python3.6.5,opencv3.14.8版本,windows10系统。编程工具使用的是pycharm专业版。

44010

工地安全帽智能识别检测系统

在施工工地,务必配戴安全帽,工地安全帽智能识别检测系统可以在大部分工程施工损害中充分发挥保障功效。 工地安全帽智能识别检测系统全自动监管现场施工作业区域范围内的工作人员是不是戴安全帽。要是没有戴安全帽,会及时警示,并通告监控后台安全管理者妥善处理。 根据智能视频采集,施工工地安全帽短视频智能识别监管系统全自动剖析识别短视频图象信息内容,不用人工控制,对施工工地关键地区开展全天监管。 工地安全帽智能识别检测系统自动识别进到实际操作范围的工作人员:假如工作人员并没有戴安全帽,可以马上警报,将报警截屏和视频存储到数据库形成报表,与此同时向有关现场管理工作人员推送警报信息,可以依据警报纪录和警报截屏

8320
  • 广告
    关闭

    年末·限时回馈

    热卖云产品年终特惠,2核2G轻量应用服务器6.58元/月起,更多上云必备产品助力您轻松上云

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    秸秆禁烧识别系统 烟雾智能识别检测系统

    秸秆禁烧识别系统 烟雾智能识别检测系统具备全天、及时发现问题、管控高效率、有益于证据收集的优势,利用现场已经存在的监控摄像头和神经网络算法烟雾识别系统,在通信基站塔顶端监控摄像头的帮助下,对图象预置开展实时分析查验 在秸秆点燃区,的时间相对性集中化,很多烟雾对成年人和患上呼吸系统疾病的少年儿童造成了巨大的损害。 秸秆禁烧识别系统烟雾智能识别检测系统是运用近郊区多层建筑和强有力的AI技术性优化计算方法综合服务平台紧密联系,在塔上装上70几台超高清监控器,可遮盖该地域80%的关键农作物。 即时智能化烟火识别、精准定位、立即预警提醒等方式,执行全天360度无死角监管。并自动记录和存档发觉、警报和解决方法的全过程,便于于查找。

    7260

    智能视频分析下的安全帽佩戴检测系统

    安全帽佩戴检测系统应用智能视频分析和深度学习神经网络技术,实现对建筑工地、石化、电力等高危行业生产区域人员活动与是否佩戴安全帽进行实时分析识别、跟踪与预警,不依赖于其他传感器、芯片、标签,直接通过视频实时分析和预警 应用行业   建筑   电力   矿山   石化   勘探   安全帽佩戴检测系统是督促员工佩戴安全帽的利器,可提高工人安全意识,将意外扼杀在摇篮中。(来源:倍特威视)

    52830

    智能事故检测,位置跟踪和通知系统(CS HCI)

    运输系统的进步提高了我们的生活速度。 同时,道路交通事故是一个重大的全球性健康问题,它导致了生命,财产和宝贵时间的巨大损失。 这被认为是当今死亡率最高的原因之一。 在本文中,我们开发了一种智能事故检测,位置跟踪和通知系统,该系统可以在发生事故时立即检测出事故。 全球定位系统(GPS)设备可查找事故的确切位置。 全球移动系统(GSM)模块将包括Google地图中位置链接在内的通知消息发送到最近的警察控制室和医院,以便他们可以访问该链接,找出事故现场的最短路线并采取主动行动,加快救援过程。 Sajedur Rahman, Mohammad Nazmus Sakib 原文地址:https://arxiv.org/abs/2001.00470 智能事故检测,位置跟踪和通知系统(CS HCI).

    28230

    智能运维探索 | 云系统中的异常检测方法

    系统异常检测背景 随着云技术的飞速发展,云系统的复杂性和规模不断增加,云系统的稳定性受到了极大挑战。 本文介绍的方法是通过分析系统指标(如CPU 使用率、I/O 请求数、网络吞吐量等)对云系统进行异常检测。 对于这些指标数据,研究人员提出了单变量的时间序列异常检测方法。 基于此种情况,研究人员又提出了多元时间序列异常检测,这种方法虽然考虑了云系统中多个指标,但没有将云系统中的组织结构考虑进来,适用性也不太好。 在复杂的云系统中我们以系统拓扑结构为基础,获得系统状态的基于图的表示,进而进行异常检测。 TopoMAD方法主要有以下几个方面的特点: ● TopoMAD是一种无监督异常检测方法,该方法考虑了云系统的拓扑信息。我们将此拓扑信息与云系统中收集的指标相结合,构建了基于图的异常检测表示。

    26130

    基于智能视频分析的可疑人员检测报警系统

    可疑人员检测报警系统基于智能视频分析,对指定区域内的可疑逗留人员进行检测报警,在铁路、公路、银行等公共安全区域提供预报警,真正做到事前预警,事中常态检测,事后规范管理,将安防操作人员从繁杂而枯燥的“ 智能视频分析系统以数字化、网络化视频监控为基础,用户可以设置某些特定的规则,系统识别不同的物体,同时识别目标行为是否符合这些规则,一旦发现监控画面中的异常情况,系统能够以最快和最佳的方式发出警报并提供有用信 可疑人员检测报警系统的优势:   1.告警精确度高   智能视频分析系统内置智能算法,能排除气候与环境因素的干扰,有效弥补人工监控的不足,减少视频监控系统整体的误报率和漏报率。    2.实时识别报警   基于智能视频分析和深度学习神经网络技术可疑逗留人员实时识别预警,告警信号可显示在监控客户端界面,也可将报警信息推送到移动端, 联动驱动警灯和警号提示用户及时处置。    3.全天时运行 稳定可靠   智能视频监控系统可对监控画面进行7×24不间断的分析,大大提高了视频资源的利用率,减少人工监控的工作强度。

    61100

    Hunting系统:简述如何通过智能分析异常来检测网络入侵行为

    而基于异常的检测系统能够检测到很多传统BDS无法发现的网络攻击活动。 为了检测网络入侵活动,BDS需要识别事件模式,需要识别的事件流包括: 网络活动-例如DNS活动和HTTP请求。 如果阈值设置的非常低,那么BDS系统所收集到的信息虽然可以用于检测攻击,但是其自动化识别的可信度并不高。 异常检测系统实现的基础是恶意活动必须在某些事件流中产生异常。 然而,当一个Hunting系统能够像人类一样对观察到的结果进行分析、排序和关联的话,系统检测能力将会大大提升。 ? 对异常事件的处理能力将关系到网络的健康情况,其中有些问题可能会跟安全无关,但是只要问题存在,组织的运营效率就会受到影响,因此基于异常智能分析的网络检测系统可能会是大家可以考虑的工具之一。

    42660

    工装穿戴检测系统 着装合规检测识别系统

    工装穿戴检测系统是根据规模性工作服图片数据信息识别学习训练,完成图片视频实时分析,着装合规检测识别系统根据人工智能算法精确分析合理的着装、工作服装色调识别;即时向上级领导以及服务平台推送违反规定时长、地址 工作服装可穿戴检测系统自动分析和识别视频图像信息内容,不用人工控制;识别监管区工作人员工作服装,真真正正完成预警信息、正常的检测、规范化管理;降低乱报和泄露;视频录像,便捷后管理方法查看。 现阶段,优化算法已经快速更改人民的生活习惯性,工作服装识别优化算法还在静电场、施工工地、金融机构系统等安全性场地应用推广,现阶段北京、上海、深圳等一线城市已普及化,但天津、西安、大连、苏州等二线城市已经检测应用环节

    7120

    c语言智能车跑道检测程序,基于金属检测智能循迹小车设计

    杜青 乔延华 韩淼 苗艳华 蔡乙男 摘 要: 为解决当前循迹小车存在性能稳定性差的问题,提出一种基于金属检测智能循迹小车设计方法。 采用LDC1000设计一种金属循迹智能小车,介绍系统总体设计框架、硬件设计和软件设计。 试验结果表明,整个系统的电路结构简单,性能稳定,实现了预期的智能小车循跡功能,具有很高的应用性。 ;报警模块可在小车检测到硬币时发出声音提示;电源模块为整个系统提供电源。 3 软件系统的设计 3.1 检测与控制算法 上电后,先检测传感器返回的数值并保存,不同环境下传感器返回的数值会不同。

    15320

    Hoope智能戒指——戴上就能检测疾病的智能硬件

    疾病检测对很多人来说是一件很麻烦的事情,因为这样那样的事而抽不出时间去医院检查。 为此硅谷的初创公司团队研发了一款智能硬件——Hoope戒指,将它戴在大拇指上不到一分钟就可以检测梅毒、淋病、衣原体和滴虫病等。 ? 如果有任何抗体的存在,都能将其捕获,由机载电子设备检测并发生电化学反应。 Hoope戒指通过无线发送数据到用户智能手机上的APP,告诉他们检测到的疾病,通知他们及时去治疗。 ? 罗拉多州立大学已经生产出了Hoope戒指样品,测试证明在检测梅毒方面非常可靠,国际团队目前正在为检测其他三种疾病而努力,并且朝着过敏症、癌症、糖尿病和妊娠检测方向进行研究。

    43350

    AI车辆检测人脸检测智能分析网关新增烟火检测识别与烟火告警

    智能分析网关V2版现已经可支持烟火识别,当检测到疑似烟火的场景时,将通过主动预警推送的方式,对现场进行抓拍、保存、上传至平台,并将预警消息通过短信、电话、邮件、微信等方式推送给相关管理人员。 图片如图所示,开启AI算法烟火检测,当通过视频画面检测出明火或烟雾时,将发出告警。同理,开启AI算法车辆检测时,可检测出经过车辆的型号、车牌、颜色,并能触发车辆违停告警。 参考代码:图片图片后台管理页面展示:图片烟火检测技术可应用在工地、煤矿、石油化工、水利水电、森林防火、仓储物流、秸秆焚烧等场景中,能弥补传统视频监控的不足,减少人工监控的工作强度。 智能分析网关基于深度学习与AI图像识别处理技术,可对前端设备采集的图像、视频等数据进行实时风险监测与烟火识别分析,一方面确保预警识别的准确性,另一方面做到及时预警,做到火情早发现、早处置,降低火灾危害程度 图片利用EasyCVR视频融合平台与边缘智能硬件智能分析网关,融合AI、云计算、大数据等技术,可通过对监控场景中的人、物、行为等进行识别,对异常情况进行告警,感兴趣的用户可以联系我们或前往演示平台测试使用

    10720

    Linux系统状态检测命令

    bytes 62348 (60.8 KiB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 2.uname 用于查看系统内核与系统版本等信息 linuxprobe Desktop]# cat /etc/redhat-release Red Hat Enterprise Linux Server release 7.0 (Maipo) 3.uptime 查看系统负载信息 linuxprobe Desktop]# uptime 15:28:36 up 28 min, 2 users, load average: 0.00, 0.06, 0.11 4.free 显示当前系统中内存使用量信息 linuxprobe :0 2018-06-07 15:02 (:0) linuxprobe pts/0 2018-06-07 15:02 (:0) 6.last 用于查看所有系统登录记录 格式:last[参数] 7.history 用于显示历史执行过的命令 格式:history [-c] 8.sosreport 用于收集系统配置及架构信息并输出诊断文档 格式:sosreport

    18920

    iDAQ动平衡检测系统

    动平衡系统通过检测旋转主轴的振动、相位和转速,告知转子不平衡点,通过加重或是减重的方式来校正动平衡。 整机动平衡:是在工作转速下直接对装在整机上的转子平衡,不需要动平衡机,仅需要动平衡检测系统,较为经济并可解决多种不平衡问题。 不同的转子系统(刚性转子、挠性转子和微速差双转子)需要有不同的动平衡检测方式: 刚性转子是工作转速远低于临界转速的转子,因其支承和转子的刚度相当大,转子在不平衡离心力的作用下所产生的动挠度(弹性变形)很小 动平衡检测系统 动平衡检测主要是通过测量转子系统的基准信号和振动信号,对这些信号进行分析,获取振动信号的峰值和相对于基准的相位,从而获取转子系统不平衡量的大小和相位信息。 iDAQ动平衡系统具有功能强大,调整灵活,适应性强等特点。通过检测转子振动、相位和转速自动定位不平衡点和加重减重质量,实现自行校正动平衡。用于各种电机、机床、风机、汽轮机、轮胎等旋转部件的动平衡。

    5620

    煤矿皮带撕裂检测系统

    煤矿皮带撕裂检测系统可以全天候监管皮带的运送的工作情况,当煤矿皮带撕裂检测系统监管皮带撕裂时,马上停止皮带的运送,精准定位到皮带的裂开部位,工作员能够及时到现场维护保养。 煤矿皮带撕裂检测系统是一套专门用于监控和防止皮带撕裂的安全检测系统。煤矿皮带撕裂检测系统目的是为了及时检测皮带表层的撕裂状况,防止因为不及时处理而进一步损坏皮带。 煤矿生产运输过程中,皮带撕裂难题自身是不可避免的,但煤矿皮带撕裂检测系统最大程度地降低皮带撕裂的损失,有效提升皮带机生产运输过程的效率。 煤矿皮带撕裂检测系统24小时对皮带开展全方位及时安全检查,可快速全自动识别分析安全隐患,提升保护效率;将警报截屏和视频保存到数据库系统,后期可根据时间段对告警记录和告警截图、视频进行查询。

    6450

    什么是入侵检测系统

    入侵检测系统检测系统信息包括系统记录,网络流量,应用程序日志等。 入侵检测的研究开始于 20世纪80年代,进入90年代入侵检测成为研究与应用的热点,其间出现了许多研究原型与商业产品。 入侵检测系统在功能上是入侵防范系统的补充, 而并不是入侵防范系统的替代。 相反,它与这些系统共同工作,检测出已经躲过这些系统控制的攻击行为。入侵检测系统是计算机系统安全、网络安全的第二道防线。 一个理想的入侵检测系统具有如下特性: 能以最小的人为干预持续运行。 典型系统包括 shadow、Bro和Snort等。 5.异常检测 与滥用检测相反,异常检测系统正常状态进行研究,通过监测用户行为模式、主机系统调用特征、网络连接状态等,建立系统常态模型。 对这种攻击的检测是现有IDS所不能胜任的,需要依靠多点分布式网络入侵检测系统,通过联防来检测。 三、典型的入侵检测系统 IDS的研究从上世纪80年代就已开始,第一个商业IDS也在1991年诞生。

    76120

    Snort入侵检测防御系统

    早期的IDS(入侵检测系统)就是用来进行监控的,后来发展到IPS(主动防御系统)进一步的可以再进行监控的同时,如果发现异常可以进行一些动作来阻断某些攻击。 检测内容:(不够细致) 只能检测到网络7层结构的第四层,像是应用层的服务、病毒.....都检测不到 鉴于此,在实际网络应用中常常两种防御系统结合来使用,在重要的服务器上使用HIDS,而其他主机使用NIDS 不过考虑到操作系统平台的安全性、稳定性,同时还要考虑与其它应用程序的协同工作的要求。如果入侵检测系统本身都不稳定容易受到攻击,就不能很好的去检测其它安全攻击漏洞了。 早期的IDS(入侵检测系统)就是用来进行监控的,后来发展到IPS(主动防御系统)进一步的可以再进行监控的同时,如果发现异常可以进行一些动作来阻断某些攻击。 不过考虑到操作系统平台的安全性、稳定性,同时还要考虑与其它应用程序的协同工作的要求。如果入侵检测系统本身都不稳定容易受到攻击,就不能很好的去检测其它安全攻击漏洞了。

    40540

    扫码关注腾讯云开发者

    领取腾讯云代金券