首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

这3个Seaborn函数可以搞定90%的可视化任务

我们可以使用displot函数创建直方图,kde图,ecdf图和rugplots。 直方图将数值变量的取值范围划分为离散的容器,并计算每个容器中的数据点(即行)的数量。...这些函数的一个优点是它们的参数基本上是相同的。例如,它们都使用hue、height和aspect 参数。它使学习语法更容易。...kde图创建了给定变量(即列)的核密度估计值,因此我们得到概率分布的估计值。我们可以通过将kind参数设置为“kde”来创建kde图。...“width”参数调整框的宽度。 以下是箱形图的结构: ? 中位数是所有点都排序后的中间点。Q1(第一或下四分位数)是下半部分的中位数,Q3(第三或上四分位数)是上半部分的中位数。...这些函数提供了一个标准的语法,这使得掌握它们非常容易。在大多数情况下,我们只需要更改kind参数的值。此外,自定义绘图的参数也是相同的。 在某些情况下,我们需要使用不同类型的图表。

1.3K20

绘制频率分布直方图的三种方法,总结的很用心!

Pandas模块 #注意直方图上添加核密度图,必须将直方图频数更改为频率,即normed参数设置成True #直方图 df.年龄.plot(kind="hist",bins=20,color="steelblue...11)、rwidth:设置直方图条形的宽度。 12)、log:是否需要对绘图数据进行log变换。 13)、color:设置直方图的填充色。 14)、edgecolor:设置直方图边框色。...2)、bins:指定直方图条形的个数。 3)、hist:bool类型的参数,是否绘制直方图,默认True。 4)、kde:bool类型的参数,是否绘制核密度图,默认True。...6)、fit:指定一个随机分布对象,需调用scipy模块中随机分布函数,用于绘制随机分布概率密度曲线。 7)、hist_kws:以字典形式传递直方图的其他修饰属性,如填充色、边框色、宽度等。...8)、kde_kws:以字典形式传递核密度图的其他修饰属性,如线的颜色、线的类型等。 9)、rug_kws:以字典形式传递须图的其他修饰属性,如线的颜色、线的宽度等。

36.6K42
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    统计学-随机变量

    直方图通常将样本数据分成若干个连续的区间,也称为“箱子”或“组”。直方图中矩形的纵轴高度可以对应频数、概率或概率密度。 一般我们使用的时候,频数用到最多。...下图中,横轴为随机变量的取值,纵轴为概率密度函数的值,而随机变量的取值落在某个区域内的概率为概率密度函数在这个区域上的积分。 当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。...散点图还可以进行扩展,就是在边缘做计算 左是边缘直方图,右是加了概率密度曲线 其实就是变量之间的关系的可视化。...这个是信号与系统里面的内容,看到了这个概密度函数 一个函数如果满足如下条件,则可以称为概率密度函数: 这可以看做是离散型随机变量的推广,积分值为1对应于取各个值的概率之和为1。...分布函数是概率密度函数的变上限积分,它定义为: 显然这个函数是增函数,而且其最大值为1。分布函数的意义是随机变量的概率。

    12210

    图像增强简介

    假设此时与图像相对应的灰度等级为[0,L-1],则直方图实际上就是这样一个函数: 其中,r_k代表第k个灰度级,n_k代表与图像中第k个灰度级相对应的像素数,n为该图像中所有像素的总数在数字图像处理中...,我们经常需要获取归一化的直方图: 其中,P(r_k)实际上表示某种形式的概率,它表示像素总数中灰度级为r_k的像素数。...当图像直方图完全均匀分布时,图像的熵最大,图像对比度高。提高图像对比度的变换函数f(x)需要满足以下条件: 其中p_x代表的概率密度函数。在离散图像中,它表示直方图每个灰度级的概率。...转换后的概率密度: 从变量上限函数的推导规则可以知道: 逆函数的导数等于原始函数的导数的倒数,因此: 除此之外, 变换后的概率密度函数是均匀分布。...因此,上述转换函数为: 其中,h(xi)代表直方图中每个灰度级的像素数,w和h分别代表图像的宽度和高度。 对比度拉伸.Image的示例作者。

    73630

    图像处理之直方图均衡化拉伸

    1) 概率密度函数 具体到一张图像上来说,可以把图像的灰度(像素值)ri看作是随机变量,则可以知道图像灰度的概率为: 对应的,对于一个连续型的随机变量x,如果存在函数f(x)也满足上面两个条件...知道概率分布函数,引用下网上相关论述[1]就能更好的理解概率密度函数了: 3) 原理应用 直方图均衡化变换就是一种灰度级非线性变换,设r和s分别表示变换前和变换后的灰度,且r和s都进行了归一化的处理...则直方图均衡化变换的公式为: 即归一化后,直方图均衡化的结果s就是r的概率分布函数。...s的概率密度为常数,说明其概率密度为均匀分布的。...参考文献 [1] 应该如何理解概率分布函数和概率密度函数 [2] 直方图均衡化的数学原理 [3] 理解概率密度函数 [4] 直方图均衡化的数学原理 [5] 直方图均衡化(Histogram equalization

    1.4K10

    单变量图的类型与直方图绘图基础

    单变量图的类型 1.直方图(histogram plot) 直方图是一种用于表示数据分布和离散情况的统计图形,它的外观和柱形图相近,但表达的含义和柱形图却相差较大。...和直方图相比,密度图不会因分组个数而导致数据显示不全,从而能够帮助用户有效判断数据的整体趋势。当然,选择不同的核函数,绘制的核密度估计图不尽相同。...在一般的学术研究中,使用直方图或密度图观察数据分布的频次要远高于 Q-Q 图。...axes.Axes.Hist () 函数的参数 density 对应的值为布尔类型,该参数决定绘图结果是否为密度图,默认值为 False。...由于概率密度函数结果是归一化的,即曲线下方的面积为 1,而直方图的总面积是样本数和每个 bin 宽度的乘积,因此,对概率密度函数结果与样本个数、bin 宽度值相乘的结果进行绘制,即可将绘制的曲线缩放到直方图的高度

    62030

    捋一捋PDF、PMF、CDF是什么

    1.基本概念 PDF:是英文单词 probability density function 的缩写,翻译过来是指概率密度函数,是用来描述连续型随机变量的输出值,在某个确定的取值点附近的可能性的大小的函数...相信大家看完上面的概念以后对这几个还是有点懵,接下来我们就仔细讲讲这些概念的来龙去脉。 2.频率分布条形图 频率分布条形图主要用在离散数据中,横轴为一个个具体的点(类别),纵轴为这些点对应的频率。...3.频率分布直方图 在频率分布直方图中横轴表示众多个连续变量离散化以后的区间,这个区间的大小称为组距,纵轴表示频率/组距。 ? 上图中每个长方形的面积就是该区间的频率,即概率。...当长方形的宽度无限小,即组距无限小的时候,频率分布直方图就无限接近于下方这样的光滑曲线,我们把这条曲线叫做概率密度曲线,即PDF。 ?...4.累积分布函数 累计分布函数就是从上图中的概率密度曲线的最左边开始,然后逐渐往右求取曲线下方的面积,即概率。

    3K30

    原来使用 Pandas 绘制图表也这么惊艳

    让我们绘制一个折线图,看看微软在过去 12 个月的表现如何: df.plot(y='MSFT', figsize=(9,6)) Output: figsize 参数接受两个参数,以英寸为单位的宽度和高度...,并允许我们更改输出图形的大小。...KDE 绘图 我们要讨论的最后一个图是核密度估计,也称为 KDE,它可视化连续和非参数数据变量的概率密度。...该图使用高斯核在内部估计概率密度函数 (PDF): df.plot(kind='kde') Output: 我们还可以指定影响 KDE 绘图中绘图平滑度的带宽,如下所示: df.plot(kind=...'kde', bw_method=0.1) Output: df.plot(kind='kde', bw_method=1) Output: 正如我们所见,选择较小的带宽会导致平滑不足,这意味着密度图显示为单个峰值的组合

    4.6K50

    我的Python分析成长之路10

    plot.hist()         密度图是一种与直方图相关的图表类型,它通过计算可能产生观测数据的连续概率分布估计而产生的。...密度图也称为内核密度估计图            (KED)         plot.density()         seabon.distplot()可以绘制直方图和连续密度估计 1 t seaborn...散点图,又称散点分布图,是一个以一个特征为横坐标,以另一个特征为纵坐标,利用坐标点的分布状态反映特征间的统计关系的一阵图形。..."kde",{“plot_kws”:0.2}) 可以支持在对角线上放置每个变量的直方图或密度估计图     4.折线图     折线图是一种将数据点按照顺序连接起来的图形。...plt.plot()   5.饼图           饼图是将各项大小与各项总和的比例显示在一张“饼”上,以“饼”的大小确定所占的比例。

    1K20

    捋一捋PDF、PMF、CDF是什么

    1.基本概念 PDF:是英文单词 probability density function 的缩写,翻译过来是指概率密度函数,是用来描述连续型随机变量的输出值,在某个确定的取值点附近的可能性的大小的函数...2.频率分布条形图 频率分布条形图主要用在离散数据中,横轴为一个个具体的点(类别),纵轴为这些点对应的频率。...3.频率分布直方图 在频率分布直方图中横轴表示众多个连续变量离散化以后的区间,这个区间的大小称为组距,纵轴表示频率/组距。 上图中每个长方形的面积就是该区间的频率,即概率。...当长方形的宽度无限小,即组距无限小的时候,频率分布直方图就无限接近于下方这样的光滑曲线,我们把这条曲线叫做概率密度曲线,即PDF。...4.累积分布函数 累计分布函数就是从上图中的概率密度曲线的最左边开始,然后逐渐往右求取曲线下方的面积,即概率。

    4.9K20

    数据分布图之统计直方图和和核密度估计图

    ggplot2提供的geom_histogram()用于绘制统计直方图 该函数有两个主要参数,binwidth(箱型3宽度)和bins(箱型数量) ggplot2提供的geom_density()用于绘制估计的和密度图...该函数两个主要参数bw(箱型的宽度)和kernel(核函数),核函数默认为高斯函数gaussian其他函数包括:epanechnikov,rectangular,triangular,biweight...,cosina,optcpsine. 1数据构造 统计直方图是对一个变量的统计,所以aex里面的参数是一个变量,不同于以往的x和y,这里我们对MXSPD进行统计 image.png 2绘制统计直方图 ggplot...(df, aes(x=MXSPD, fill=Location))+ geom_histogram(binwidth = 1,alpha=0.55,colour="black",size=0.25...#, legend.position=c(0.8,0.8), legend.background = element_blank() ) image.png 4绘制估计概率密度图

    1.8K00

    直方图与核密度估计

    而直方图跟核密度估计(Kernel Density Estimation,KDE)方法的主要差别在于,直方图得到的是一个离散化的统计分布,而KDE方法得到的是一个连续的概率分布函数。...制备样本 在使用直方图和KDE前,我们需要先制备一些样本,这里可以使用Numpy生成一些随机数,便于测试,例如均匀随机数,其概率密度为: f(x)=\left\{ \begin{matrix} \frac...还可以使用高斯分布,其概率密度为: f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} 对应的numpy生成方法为: data...值得注意的是,这里的带宽 \sigma 可以理解为波包宽度的设定。...: 在这个结果中我们看到,因为采样比较稀疏,直方图只会显示被采到的那个格点,而核密度估计函数则是以波包的形式,将采样概率密度辐射到整个的采样空间上,这就实现了一个连续化。

    21310

    NumPy 随机数据分布与 Seaborn 可视化详解

    生成离散分布随机数 choice(a, p, size):从数组 a 中随机选择元素,并根据概率 p 进行选择。 a:源数组,包含所有可能值。 p:每个值的概率数组,总和必须为 1。...([1, 2, 3, 4, 5]) x = permutation(arr) print(x) 练习 使用 choice 方法生成 200 个随机数,其中 1 出现的概率为 0.1,2 出现的概率为...该函数接受以下参数: data:要绘制分布的数据。可以是数组、列表或 Pandas 数据框。 hist:如果为 True(默认),则绘制直方图;如果为 False,则只绘制密度曲线。...kde:如果为 True(默认),则使用核密度估计 (KDE) 来估计数据的分布;如果为 False,则使用直方图。 bins:用于创建直方图的直方图数量。 norm:用于规范分布的类型。...,并使用 Seaborn 绘制它们的分布图,不显示直方图或密度曲线。

    10510

    NumPy 随机数据分布与 Seaborn 可视化详解

    生成离散分布随机数choice(a, p, size):从数组 a 中随机选择元素,并根据概率 p 进行选择。a:源数组,包含所有可能值。p:每个值的概率数组,总和必须为 1。..., 2, 3, 4, 5])x = permutation(arr)print(x)练习使用 choice 方法生成 200 个随机数,其中 1 出现的概率为 0.1,2 出现的概率为 0.2,3 出现的概率为...该函数接受以下参数:data:要绘制分布的数据。可以是数组、列表或 Pandas 数据框。hist:如果为 True(默认),则绘制直方图;如果为 False,则只绘制密度曲线。...kde:如果为 True(默认),则使用核密度估计 (KDE) 来估计数据的分布;如果为 False,则使用直方图。bins:用于创建直方图的直方图数量。norm:用于规范分布的类型。...,并使用 Seaborn 绘制它们的分布图,不显示直方图或密度曲线。

    12300

    数据分析师必看的5大概率分布

    和最后一个:所述之和的P(X = x)的所有可能的值X为1。 最后一个意味着“X在宇宙中取任何价值的概率,必须加起来为1。...P(X=k)=p(1-p)^k 01 其中k可以采用具有正概率的任何非负值。 注意所有可能值的概率之和如何仍然加起来为1。...因此,如果我们为其所有可能值分配了非零概率,则它们的总和不会加起来为1。 为了解决这个问题,如果X是连续的,我们为所有k设置 P(X = x)= 0,而是为X赋予一个非零的机会获取某个间隔的值。...它代表一个二进制事件:“这件事发生” VS“这种情况没有发生”,并采取了值 p作为其唯一的参数,它代表的概率是会发生的事件。...离散均匀分布 将采取(有限的)值的集合s,为每个值分配1 / n的概率,其中n是S中元素的数量。这样,如果我的变量 Y 在{1,2,3}中是均匀的,则每个值出现的概率为33%。

    81820

    Python数据可视化的10种技能

    其中参数 x 是一维数组,bins 代表直方图中的箱子数量,kde 代表显示核密度估计,默认是 True,我们也可以把 kde 设置为 False,不进行显示。...核密度估计是通过核函数帮我们来估计概率密度的方法。 这是一段绘制直方图的代码。...条形图 如果说通过直方图可以看到变量的数值分布,那么条形图可以帮我们查看类别的特征。在条形图中,长条形的长度表示类别的频数,宽度表示类别。...饼图 饼图是常用的统计学模块,可以显示每个部分大小与总和之间的比例。在 Python 数据可视化中,它用的不算多。我们主要采用 Matplotlib 的 pie 函数实现它。...其中用 kind 表示不同的视图类型:“kind=‘scatter’”代表散点图,“kind=‘kde’”代表核密度图,“kind=‘hex’ ”代表 Hexbin 图,它代表的是直方图的二维模拟。

    2.8K20
    领券