前言 EK算法是求网络最大流的最基础的算法,也是比较好理解的一种算法,利用它可以解决绝大多数最大流问题。...但是受到时间复杂度的限制,这种算法常常有TLE的风险 思想 还记得我们在介绍最大流的时候提到的求解思路么? 对一张网络流图,每次找出它的最小的残量(能增广的量),对其进行增广。...没错,EK算法就是利用这种思想来解决问题的 实现 EK算法在实现时,需要对整张图遍历一边。 那我们如何进行遍历呢?BFS还是DFS?...因为DFS的搜索顺序的原因,所以某些毒瘤出题人会构造数据卡你,具体怎么卡应该比较简单,不过为了防止大家成为这种人我就不说啦(#^.^#) 所以我们选用BFS 在对图进行遍历的时候,记录下能进行增广的最大值...通过上图不难看出,这种算法的性能还算是不错, 不过你可以到这里提交一下就知道这种算法究竟有多快(man)了 可以证明,这种算法的时间复杂度为 大体证一下: 我们最坏情况下每次只增广一条边,则需要增广
这两本是之前有朋友在评论里推荐的: 《牧羊少年奇幻之旅》 《大流感:最致命瘟疫的史诗》 画外音:坚持一件事很难,但读书,真的有用。 《牧羊少年奇幻之旅》 小时候,有人问我们的梦想是什么?...15分钟,扫码听书《牧羊少年奇幻之旅》 《大流感:最致命瘟疫的史诗》 由历史学家约翰·M·巴里带来的全面回顾1918年大流感的这本书,被美国科学院评为2005年度最佳科学/医学类图书。...在以冷静客观的笔调描述了大流感的社会图景,以深入浅出的逻辑解释了病毒与人类之间的战争关系之后,《大流感:最致命瘟疫的史诗》中更加宝贵的对瘟疫留给人类的遗产进行了深刻反思,展现出了理性的光辉。...所以1918年大流感的最后一条教训,即那些身居要职的权威人士必须降低可能离间整个社会的恐慌,可谓知易行难。 这是流感,仅仅只是流感。...让我们一起通过《大流感:最致命瘟疫的史诗》来反思如何应对病毒。 15分钟,扫码听书《大流感,最致命瘟疫的史诗》 不知不觉,坚持读书3年了,希望我们一起,养成自律的习惯。
前置知识 网络最大流入门 前言 Dinic在信息学奥赛中是一种最常用的求网络最大流的算法。 它凭借着思路直观,代码难度小,性能优越等优势,深受广大oier青睐 思想 Dinic算法属于增广路算法。...它的核心思想是:对于每一个点,对其所连的边进行增广,在增广的时候,每次增广“极大流” 这里有别于EK算法,EK算法是从边入手,而Dinic算法是从点入手 在增广的时候,对于一个点连出去的边都尝试进行增广...实现 有了上面的知识,Dinic实现起来也就比较简单了。...Dinic算法的性能在比赛中表现的非常优越。...按照集训队大佬ly的说法,我们可以认为Dinic算法的时间复杂度是线性的(比某标号算法不知道高到哪里去了) 代码 题目链接 #include #include #include
实现功能:同Dinic网络最大流 1 这个新的想法源于Dinic费用流算法。。。...在费用流算法里面,每次处理一条最短路,是通过spfa的过程中就记录下来,然后顺藤摸瓜处理一路 于是在这个里面我的最大流也采用这种模式,这样子有效避免的递归,防止了爆栈么么哒 1 type 2
实现功能:同sap网络最大流 今天第一次学Dinic,感觉最大的特点就是——相当的白话,相当的容易懂,而且丝毫不影响复杂度,顶多也就是代码长个几行 主要原理就是每次用spfa以O(n)的时间复杂度预处理出层次图
实现功能:输入M,N,S,T;接下来M行输入M条弧的信息(包括起点,终点,流量,单位费用);实现功能是求出以S为源点,T为汇点的网络最大流的最小费用 其实相当的像Dinic最大流呐= = 还是spfa处理出最短路径...这次是最短路径,所以时空复杂度将有所提高,害得我都开循环队列了TT),然后顺着最短路径顺藤摸瓜找回去,求出流大小和最小的费用,然后,没有然后了,程序还是一样的好懂么么哒(HansBug:感觉Dinic算法真心超级喜感...then swap(j,k); 89 add(j,k+n,1,l); 90 end; 91 flow:=0;ans:=0; //flow表示最大流
1、稳定性 选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法, 冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法。 2、研究排序算法的稳定性有何意义? ...而稳定的排序会保证比较时,如果两个学生年龄相同,一定不会交换。 那也就意味着尽管是对“年龄”进行了排序,但是学号顺序仍然是由小到大的要求。...注意是相邻的两个元素进行比较,而且是否需要交换也发生在这两个元素之间。 所以,如果两个元素相等,我想你是不会再无聊地把它们俩再交换一下。...比较拗口,举个例子:序列5 8 5 2 9, 我们知道第一趟选择第1个元素5会与2进行交换,那么原序列中两个5的相对先后顺序也就被破坏了。 所以选择排序不是一个稳定的排序算法。...比较是从有序序列的末尾开始,也就是把待插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面。 否则一直往前找直到找到它该插入的位置。
不说废话了,直接正题 首先要先清楚最大流的含义,就是说从源点到经过的所有路径的最终到达汇点的所有流量和 EK算法的核心 反复寻找源点s到汇点t之间的增广路径,若有,找出增广路径上每一段[容量-流量...而找到delta后,则使最大流值加上delta,更新为当前的最大流值。 ?...这么一个图,求源点1,到汇点4的最大流 由于我是通过模版真正理解ek的含义,所以先上代码,通过分析代码,来详细叙述ek算法 1 #include 2 #include 大流,因为我们可以同时走1-2-4和1-3-4,这样可以得到流量为2的流。 那么我们刚刚的算法问题在哪里呢?...这就是这个算法的精华部分,利用反向边,使程序有了一个后悔和改正的机会。而这个算法和我刚才给出的代码相比只多了一句话而已。 至此,最大流Edmond-Karp算法介绍完毕。
// 排序算法比较 #include #include #include #define numcnt 40000 // 30000时,有的对比不出来...+ 1; right_high = high; for(k=0; left_low比较两个指针所指向的元素
这块主要就是要理解,什么是maxflow,以及节点最后分割的类型是SOURCE还是SINK分别意味着什么 graphcuts算法时间复杂度与其他最大流算法的比较: ?
排序算法的比较 从时间复杂度上来看 简单选择排序、直接插入排序和冒泡排序平均情况下的时间复杂度都为O(n^2),且实现过程也较为简单,但直接插入排序和冒泡排序最好情况下的时间复杂度的时间复杂度可以达到...快速排序基于分治的思想,虽然最坏情况下快速排序时间会达到O(n ^ 2),但快速排序平均性能可以达到O(nlog2n),在实际应用中常常优于其他排序算法。...2路归并排序在合并操作中需要借助较多的辅助空间用于元素复制,大小为O(n),虽然有方法能克服这个缺点,但其代价是算法会很复杂而且时间复杂度会增加。
基本排序算法 这里主要介绍的基本排序算法主要包括: 冒泡排序,选择排序,插入排序,之后的文章会介绍希尔排序,快速排序等高级排序算法, 文章后面会对这几个算法进行性能比较....基本排序算法的核心思想是对一组数据按照一定的顺序重新排列. 重新排列主要就是嵌套的for循环. 外循环会遍历数组每一项,内循环进行元素的比较....注: 文中都以实现升序排序为例: 1.冒泡排序 冒泡排序是最慢的排序算法之一, 也是最容易实现的排序算法.使用这种算法进行排序时,数据值会像气泡一样从数组的一端漂浮到另一端,所以称之为冒泡排序.假设要对数组按照升序排列...原理: 从开始第一对相邻元素开始,对每一对相邻元素进行比较,如果第一个比第二个大,就交换它们两个, 这样直到最后一对元素比较结束,最后的元素就是最大的数,重复这个过程,就可以完成排序....preIndex--; } arr[preIndex + 1] = current; } return arr; } 4.基本排序算法的性能比较
通常最开始我们都会选择大家普遍认同的算法,诸如SVM,GBDT,Adaboost,现在深度学习很火热,神经网络也是一个不错的选择。...假如你在乎精度(accuracy)的话,最好的方法就是通过交叉验证(cross-validation)对各个算法一个个地进行测试,进行比较,然后调整参数确保每个算法达到最优解,最后选择最好的一个。...对小规模的数据表现很好,能个处理多分类任务,适合增量式训练; 对缺失数据不太敏感,算法也比较简单,常用于文本分类。 缺点: 需要计算先验概率; 分类决策存在错误率; 对输入数据的表达形式很敏感。...关于随机森林和GBDT等组合算法,参考这篇文章:机器学习-组合算法总结 缺点:对outlier比较敏感 ---- 6.SVM支持向量机 高准确率,为避免过拟合提供了很好的理论保证,而且就算数据在原特征空间线性不可分...算法选择参考 之前翻译过一些国外的文章,有一篇文章中给出了一个简单的算法选择技巧: 首当其冲应该选择的就是逻辑回归,如果它的效果不怎么样,那么可以将它的结果作为基准来参考,在基础上与其他算法进行比较;
排序算法比较图片如何分析一个排序算法?可以从以下三个方面分析排序算法:1、 时间效率 这里所谓的实践效率就是时间复杂度。复杂度描述的是算法执行时间(或占用空间)与数据规模的增长关系。...对于时间复杂度的分析,要把最好时间复杂度、最坏时间复杂度、平均时间复杂度分析出来,分别对应了排序算法的最好排序情况、最坏排序情况以及平均排序效率。...2、 空间消耗 所谓的空间消耗对应的是空间复杂度,在排序算法中需要开辟的额外内存空间是多少。如果空间复杂度为 O(1),此时该排序叫做原地排序。...3 、稳定性 算法的稳定性虽然我们之前接触的很少,但是稳定性也是衡量一个排序算法的重要标准。什么是稳定排序呢?比如有一组有重复待排序的数据,排序前后,重复的数据顺序不变,此时该排序为稳定排序。...常见排序算法分类图片常见排序算法比较:图片参考资料十大经典排序算法动图演示菜鸟教程——经典排序算法
通常最开始我们都会选择大家普遍认同的算法,诸如SVM,GBDT,Adaboost,现在深度学习很火热,神经网络也是一个不错的选择。...假如你在乎精度(accuracy)的话,最好的方法就是通过交叉验证(cross-validation)对各个算法一个个地进行测试,进行比较,然后调整参数确保每个算法达到最优解,最后选择最好的一个。...对小规模的数据表现很好,能个处理多分类任务,适合增量式训练; 对缺失数据不太敏感,算法也比较简单,常用于文本分类。...关于随机森林和GBDT等组合算法,参考这篇文章:机器学习-组合算法总结 缺点:对outlier比较敏感 6SVM支持向量机 高准确率,为避免过拟合提供了很好的理论保证,而且就算数据在原特征空间线性不可分...算法选择参考 之前翻译过一些国外的文章,有一篇文章中给出了一个简单的算法选择技巧: 1、首当其冲应该选择的就是逻辑回归,如果它的效果不怎么样,那么可以将它的结果作为基准来参考,在基础上与其他算法进行比较
机器学习算法对比 本文中对几种常见的机器学习算法进行了总结,主要是监督学习和非监督学习的算法对比: KNN 聚类和降维 决策树和随机森林 ?...K近邻-KNN(有监督) 算法思想 物以类聚,给定一个训练数据集,对于新输入的实例,在训练集数据中找出和该实例最邻近的k个实例,算法的具体步骤为: 算距离:给定测试对象,计算它与训练集中的每个对象的距离...算法接受一个未标记的数据集,然后将数据聚类成不同的组。...算法主要是分类:聚类的目的是将相似的东西放在一起,通过计算样本间和群体间距离得到 主要算法包含:K-Means、层次聚类等 无监督学习算法 聚类:K-Means 降维:PCA 主成分分析-PCA PCA...,偏向于取值较多的属性进行分割 C4.5:基于信息增益率来选择,对数目较少的属性有所偏好 CART:基于基尼系数来选择,采用的是二元切分法;基尼系数越小越好,数据的纯度越高 决策树算法 算法描述 ID3
().transAxes,size=15, horizontalalignment='right') plot_num+=1 plt.show() 算法...:聚类算法比较是包括MiniBatchKMeans、AP聚类、MeanShift、谱聚类、Ward聚类、层次聚类、DBSCAN聚类、Birch聚类和高斯混合模型聚类算法的参数被优化到最佳聚类的结果比较。
通常最开始我们都会选择大家普遍认同的算法,诸如SVM,GBDT,Adaboost,现在深度学习很火热,神经网络也是一个不错的选择。...假如你在乎精度(accuracy)的话,最好的方法就是通过交叉验证(cross-validation)对各个算法一个个地进行测试,进行比较,然后调整参数确保每个算法达到最优解,最后选择最好的一个。...对小规模的数据表现很好,能个处理多分类任务,适合增量式训练; 对缺失数据不太敏感,算法也比较简单,常用于文本分类。 缺点: 需要计算先验概率; 分类决策存在错误率; 对输入数据的表达形式很敏感。...关于随机森林和GBDT等组合算法,参考这篇文章:机器学习-组合算法总结 缺点:对outlier比较敏感 6、SVM支持向量机 高准确率,为避免过拟合提供了很好的理论保证,而且就算数据在原特征空间线性不可分...算法选择参考 之前翻译过一些国外的文章,有一篇文章中给出了一个简单的算法选择技巧: 1、首当其冲应该选择的就是逻辑回归,如果它的效果不怎么样,那么可以将它的结果作为基准来参考,在基础上与其他算法进行比较
实现功能:同前 程序还是一如既往的优美,虽然比起邻接矩阵的稍稍长了那么些,不过没关系这是必然,但更重要的一个必然是——速度将是一个质的飞跃^_^(这里面的poi...
工欲善其事,必先利其器,每一位程序员都有自己私藏的编程必备工具,接下来小编就给大家推荐5款程序员最佳的代码比较工具。...可视化比较,非常直观,支持两相比较和三相比较。这就是说,使用 Diffuse 你可以同时比较两个或三个文本文件。...为什么祖传代码会被称为屎山 三、WinMerge 推荐:★★★★ 一款运行于Windows系统下的文件比较和合并工具,使用它可以非常方便地比较多个文档内容,适合程序员或者经常需要撰写文稿的朋友使用。...SpringBoot集成WebSocket,实现后台向前端推送信息 五、AptDiff 推荐:★★★ AptDiff是一个文件比较工具,可以对文本和二进制文件进行比较和合并,适用于软件开发、网络设计和其它的专业领域...在阅读上述内容后,你可能也想要试一试其中几款软件,或许这些软件不在你的个人收藏之中,不过它们也是代码比较的实用工具。当然如果还有其他的代码比较神器,你觉得应该也占有一席之地,欢迎留言交流。
领取专属 10元无门槛券
手把手带您无忧上云