刷了一天最大流的题,都快刷晕了,, 简单总结几个模型吧。 大部分内容来自学姐的PPT 拆点 一个非常有用的思想 限流 将对点的限制转化为对边的限制 点的合并 这个还没看到 最小割 最小割==最大流 一条增广路中,必有一条边满流,满流的流量即为这条增广路的流量,那么删除满流的这条边即可阻断一条增广路。删去一些边使源汇不连通即阻断所有的增广路,代价之和即为最大流。 最大流=最小割 你能想到什么? 大与小的转换 留下最多与拿走最少的转换 最大收益与最小损失的转换 选最优与不选最差的转换 什么时候转换?
距离 ACM模版-f_zyj v 1.1\text{ACM模版-f_zyj v 1.1} 版成工已经一年整了,这一年,我每次发现其中有不足时,都会在我在博客 ACM在线模版-f-zyj\text{ACM在线模版-f-zyj} 中对其进行更新,稀稀拉拉的一年过去了,我发现增删改的地方实在不少,所以总是有朋友问我什么时候会将这些更新整理到 PDFPDF 格式中……
这里跟之前不同的地方在于x∈X。之前我们都在说的是连续性问题,即X=\(R^n\);在对偶理论中包含了离散性的问题,X可能是整数集合,即X=\(Z^n\),或者正整数集合X=\(Z^n+\),或者0-1规划,即X=\({\{0,1\}}^n\),也可以任何自定义的集合,如X={x| \(e^Tx=1\),x≥0};(P)在对偶理论中称为原问题(primal problem)。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014688145/article/details/75565373
大学期间,ACM队队员必须要学好的课程有: l C/C++两种语言 l 高等数学 l 线性代数 l 数据结构 l 离散数学 l 数据库原理 l 操作系统原理 l 计算机组成原理 l 人工智能 l 编译原理 l 算法设计与分析 除此之外,我希望你们能掌握一些其它的知识,因为知识都是相互联系,触类旁通的。
算法工程师成长计划 近年来,算法行业异常火爆,算法工程师年薪一般20万~100 万。越来越多的人学习算法,甚至很多非专业的人也参加培训或者自学,想转到算法行业。尽管如此,算法工程师仍然面临100万的人才缺口。缺人、急需,算法工程师成为众多企业猎头争抢的对象。 计算机的终极是人工智能,而人工智能的核心是算法,算法已经渗透到了包括互联网、商业、金融业、航空、军事等各个社会领域。可以说,算法正在改变着这个世界。 下面说说如何成为一个算法工程师,万丈高楼平地起,尽管招聘启事的算法工程师都要求会机器学习,或数据挖
数据结构 数组 Array 栈 Stack 队列 Queue 优先队列(Priority Queue, heap) 链表 LinkedList(single/double) Tree/ Binary Tree Binary Search Tree HashTable Disjoint Set Trie BloomFliter LRU Cache 算法分类 线性结构 莫队 (Mo’s Algorithm) 前缀和 基本数组 向量 链接表(linked list) 栈(stack) 队列 块状链表
1996 年, 美国计算机科学家 David R Karger 连同其他研究者在论文《 A new approach to the minimum cut problem》中提出了一个令人惊讶的随机算法 Karger 算法,其在理论计算机科学中非常重要,尤其适用于大规模图的近似最小割问题。
Description It is year 2500 A.D. and there is a terrible war between the forces of the Earth and the Mars. Recently, the commanders of the Earth are informed by their spies that the invaders of Mars want to land some paratroopers in the m × ngrid yard of
人生就是不断的填坑与见坑。 2019年10月8日更新: 老师跟学长说,有很多只是太不常见,让我去掉,不属于基础的范畴,于是做出以下调整。 BFS DFS 最短路 第K短路 最小生成树(森林) 次小生成树 曼哈顿最小生成树 最短路径生成树 欧拉路径 拓扑排序 最小树形图 生成树计数 树的重心 DAG的深度优先搜索标记 图的割点、桥和双连通分支的基本概念 LCA 无向图找桥 无向图连通度(割) 最大团问题 一般图匹配带花树 有向图的强连通分量 Tarjan强连通分量 弦图判断
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014688145/article/details/75507959
Dijkstra’s algorithm(迪杰斯特拉算法)是一种用于求解单源最短路径问题的经典算法。该算法可以计算从单个起始节点到图中所有其他节点的最短路径。Dijkstra’s algorithm适用于没有负权边的有向或无向带权图。
作者提出了一种语义平面 SLAM 系统,该系统使用来自实例平面分割网络的线索来改进位姿估计和映射。虽然主流方法是使用 RGB-D 传感器,但在这样的系统中使用单目相机仍然面临着鲁棒的数据关联和精确的几何模型拟合等诸多挑战。在大多数现有工作中,几何模型估计问题,例如单应性估计和分段平面重建(piece-wise planar reconstruction,PPR),通常由标准(贪婪)RANSAC解决。然而,在缺乏场景信息(即尺度)的情况下,设置RANSAC的阈值是很非常困难的。在这项工作中,作者认为可以通过最小化涉及空间相干性的能量函数来解决两个提到的几何模型(单应性/3D平面),即图割优化,这也解决了经过训练的CNN的输出是不准确的问题。此外,作者根据实验提出了一种自适应参数设置策略,并完成了对各种开源数据集的综合评估。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
图像分割(image segmentation)技术是计算机视觉领域的一个重要的研究方向,是图像语义理解的重要一环。图像分割是指将图像分成若干具有相似性质的区域的过程,从数学角度来看,图像分割是将图像划分成互不相交的区域的过程。近些年来随着深度学习技术的逐步深入,图像分割技术有了突飞猛进的发展,该技术相关的场景物体分割、人体前背景分割、人脸人体Parsing、三维重建等技术已经在无人驾驶、增强现实、安防监控等行业都得到广泛的应用。
这就是代价函数了 在两个参数下 真实值与求出的值的差的平方和 除以2m 其实就是求误差的平均数
最近一段时间再看斯坦福大学几期学习的教学视频,有百度首席工程师、百度大脑以及百度研究院的负责人吴恩达教授讲述,内容深入浅出,推荐想踏入机器学习领域的童鞋观看。这儿为了加深对知识的认知,在这儿整理出来跟大家分享交流(中间活血有一些纰漏希望大家指出改正)。这个系列主要想能够用数学去描述机器学习,想要学好机器学习,首先得去理解其中的数学意义,不一定要到能够轻松自如的推导中间的公式,不过至少得认识这些式子吧,不然看一些相关的论文可就看不懂了,这个系列主要将会着重于去机器学习的数学描述这个部分,将会覆盖但不一定局限于
Logistic 回归 或者叫逻辑回归 虽然名字有回归,但是它是用来做分类的。其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式,以此进行分类。
优化通常是一个极其困难的问题。传统的机器学习会小心设计目标函数和约束。以确保优化问题是凸的,从而避免一般优化问题的复杂度。在训练神经网络时,我们肯定会遇到一般的非凸情况。即使是凸优化,也并非没有任何问题。
图像分割(image segmentation)技术是计算机视觉领域的个重要的研究方向,是图像语义理解的重要一环。图像分割是指将图像分成若干具有相似性质的区域的过程,从数学角度来看,图像分割是将图像划分成互不相交的区域的过程。近些年来随着深度学习技术的逐步深入,图像分割技术有了突飞猛进的发展,该技术相关的场景物体分割、人体前背景分割、人脸人体Parsing、三维重建等技术已经在无人驾驶、增强现实、安防监控等行业都得到广泛的应用。
在之前的两个章节里介绍了基于采样一致的点云分割和基于临近搜索的点云分割算法。基于采样一致的点云分割算法显然是意识流的,它只能割出大概的点云(可能是杯子的一部分,但杯把儿肯定没分割出来)。基于欧式算法的点云分割面对有牵连的点云就无力了(比如风筝和人,在不用三维形态学去掉中间的线之前,是无法分割风筝和人的)。基于法线等信息的区域生长算法则对平面更有效,没法靠它来分割桌上的碗和杯子。也就是说,上述算法更关注能不能分割,除此之外,我们还需要一个方法来解决分割的“好不好”这个问题。也就是说,有没有哪种方法,可以在一个点不多,一个点不少的情况下,把目标和“其他”分开。
之前的一个学习一直在看图像分割的部分内容,基于交互的图像分割基本都是用图割的算法,全自动的图割算法也有最小生成树的改进算法。
立体匹配是三维重建系统的关键步骤,并且作为一种非接触测量方法在工业以及科研领域具有重要的应用价值。为了完成匹配工作以及获取场景的稠密视差图,可以通过构建能量函数对应立体匹配的约束条件。复杂能量函数的全局最优解通常是NP难问题。相对于其他全局优化算法相比如模拟退火、梯度下降、动态规划等,图割算法不仅精度高,收敛速度快,并且对于光照变化、弱纹理等区域的匹配效果也比其他算法好。
随着3D扫描技术的进步,如何将点云的前景和背景正确分离成为点云处理的一个具有挑战性的问题。具体来说,就是给定一个对象位置的估计,目标是识别属于该对象的那些点,并将它们与背景点分开。除了将前景与背景分离的基本任务外,分割还有助于定位、分类和特征提取。根据人类视觉感知的原理,一个典型的2D图像的图割问题如图1所示。
偏导数刻画了函数沿坐标轴方向的变化率,但有些时候还不能满足实际需求。为了研究函数沿着任意方向的变化率,就需要用到方向导数。
基于密度的噪声应用空间聚类(DBSCAN)是一种无监督的ML聚类算法。无监督的意思是它不使用预先标记的目标来聚类数据点。聚类是指试图将相似的数据点分组到人工确定的组或簇中。它可以替代KMeans和层次聚类等流行的聚类算法。
众所周转,单纯形法是求解线性规划问题最常用、最有效的算法之一,一些做优化的软件比如lingo都有对应很成熟的实现库,该方法的提出是由Spendley、Hext和Himswor等人在1962年提出的,它虽然是一个代数计算过程,但是本质还是基于几何原理,且它不需要计算目标函数的梯度,也就避免了一系列的求导操作,也是优化领域较为奠基的方法之一。
。 实验结果表明,将MPDIoU损失函数应用于最先进的实例分割(如YOLACT)和目标检测(如YOLOv7)模型,在PASCAL VOC、MS COCO和IIIT5k数据集上优于现有的损失函数。
在深度学习出现后,人脸识别技术才真正有了可用性。这是因为之前的机器学习技术中,难以从图片中取出合适的特征值。轮廓?颜色?眼睛?如此多的面孔,且随着年纪、光线、拍摄角度、气色、表情、化妆、佩饰挂件等等的不同,同一个人的面孔照片在照片象素层面上差别很大,凭借专家们的经验与试错难以取出准确率较高的特征值,自然也没法对这些特征值进一步分类。深度学习的最大优势在于由训练算法自行调整参数权重,构造出一个准确率较高的f(x)函数,给定一张照片则可以获取到特征值,进而再归类。本文中笔者试图用通俗的语言探讨人脸识别技术,首先概述人脸识别技术,接着探讨深度学习有效的原因以及梯度下降为什么可以训练出合适的权重参数,最后描述基于CNN卷积神经网络的人脸识别。
基于边缘的分割方法是通过检测图像中的边缘来进行分割的。边缘通常表示图像中不同区域之间的分界线。在图像中,边缘通常是指图像灰度值变化的位置,如物体边缘、纹理等。
二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图。简而言之,就是顶点集V可分割为两个互不相交的子集,并且图中每条边依附的两个顶点都分属于这两个互不相交的子集,两个子集内的顶点不相邻。(简单说就是把一个图的顶点分成两个集合,且集合内的点不邻接)
想当年,大学的时候。同学们进进出出图书馆,手里揣着的都是什么微积分,明朝那些事儿之类的书。而我几年下来,全是adobe photoshop,adobe premiere,adobe after effects,adobe flash,总之就是adobe全家桶。别人在网吧打游戏,我经常鼓捣七八个小时的绘声绘影,premiere,nero等等。
LR主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式,以此进行分类。
对于凸规划 $ min f(x) $ $ s.t. g_i(x) \leq 0, i=1,2,L,m $
如图所示,其中的三条边即该图的一个匹配。所以,匹配的两个重点:1. 匹配是边的集合;2. 在该集合中,任意两条边不能有共同的顶点。 那么,我们自然而然就会有一个想法,一个图会有多少匹配?有没有最大的匹配(即边最多的匹配呢)?
在深度模型中我们通常需要设计一个模型的代价函数(或损失函数)来约束我们的训练过程,训练不是无目的的训练,而是朝着最小化代价函数的方向去训练的。本文主要讨论的就是这类特定的优化问题:寻找神经网络上一组参
选自南京大学 作者:张腾、周志华 机器之心编译 参与:刘晓坤、黄小天 在这篇题为《Optimal Margin Distribution Clustering》的论文中,南京大学周志华教授、张腾博士提出了一种新方法——用于聚类的最优间隔分布机(Optimal margin Distribution Machine for Clustering/ODMC),该方法可以用于聚类并同时获得最优间隔分布。在 UCI 数据集上的大量实验表明 ODMC 显著地优于对比的方法,从而证明了最优间隔分布学习的优越性。 聚类是
木材表面缺陷不利于木材的加工利用,降低木制品的品质,影响生产企业的经济效益,因此木材表面缺陷的图像检测技术越来越受重视。而采用图像处理方法进行木材表面缺陷检测,是实现木材表面缺陷自动检测、提高企业生产效率的必由之路。
用于深度模型训练的优化算法与传统的优化算法在几个方面有所不同。机器学习通常是简接作用的,再打所述机器学习问题中,我们关注某些性能度量P,其定义于测试集上并且可能是不可解的。因此,我们只是间接地优化P,我们希望通过降低代价函数
图像配准(apap)是将两张场景相关的图像进行映射,寻找其中的关系,多用在医学图像配准、图像拼接、不同摄像机的几何标定等方面,其研究也较为成熟。OpenCv中的stitching类就是使用了2007年的一篇论文(Automatic panoramic image stitching using invariant features)实现的。虽然图像配准已较为成熟,但其实其精度、鲁棒性等在某些场合仍不足够,如光线差异很大的两张图片、拍摄角度差异很大的图片等。2013年,Julio Zaragoza等人发表了一种新的图像配准算法Apap(As-Projective-As-Possible Image Stitching with Moving DLT),该算法的效果还是不错的,比opencv自带的auto-stitch效果要好。而2015年也有一篇cvpr是介绍图像配准(Non-rigid Registration of Images with Geometric and Photometric Deformation by Using Local Affine Fourier-Moment Matching),其效果貌似很牛,但没有源码,难以检验。
ICLR2021投稿的3篇值得关注的图相关论文: 1.图-图相似网络——将图分类问题转化为一个经典的节点分类问题 2.如何找到你的友好邻里:自监督的图注意设计——提出了一种改进的噪声图的图注意模型——
转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/51531333, 来自: shiter编写程序的艺术
回归与梯度下降 回归在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如locally weighted回归,logistic回归,等等,这个将在后面去讲。 用一个很简单的例子来说明回归,这个例子来自很多的地方,也在很多的open source的软件中看到,比如说weka。大概就是,做一个房屋价值的评估系统,一个房屋的价值来自很多地方,比如说面积、房间的数量(几室几厅)、地 段、朝向等等,这些影响房屋
决策树是有监督学习算法中的一种。基于属性做一系列的决策,每次决策要么进入下一级决策,要么生成最终结果。决策树可以作为集成算法中的基分类器,并且有最为广泛的应用。 决策树算法 要想理解决策树的工作原理,首先需要了解决策树的层次结构。决策树由结点与有向边组成,其中,结点分为如下三种: 根结点:无入边,但有零条或多条出边 内部结点:有一条入边和多条出边 叶节点:有一条入边,无出边 每个叶节点都有一个类标号,根节点和内部结点包含属性测试条件,每个根节点和内部结点都对应一次条件判断,用来分开有不同特性的记录。对
推论 设图 无孤立点, 是 的一个匹配, 是 的一个边覆盖,则 ,且当等号成立时, 是 的完美匹配, 是 的最小边覆盖。
动态因果图知识表达模型,简称因果图,是一种以概率论为理论基础的知识表达推理模型,与信度网(Belief Network)一样,属于基于不确定性的推理算法研究领域。不确定性知识表达和推理通常可分为两类:
领取专属 10元无门槛券
手把手带您无忧上云