首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Machine Learning in Action:KNN Algorithm

    对于分类问题,最主要的任务就是找到对应数据合适的分类。而机器学习的另一项任务就是回归,比如CTR预测之类的。ml算法按照有无label可以分为有监督学习和无监督学习,对于无监督学习的算法比较经典的有聚类算法,有监督的相对来说较多,回归类算法基本都是的。按照参数有可以划分成有参数模型和无参数模型和半参数模型,有参数模型有两个特征,一个是用参数代表从训练数据中获得的信息,只有当target function包含在了hypothesis set里面才会收敛。无参数模型是没有参数的,直接存储所以的训练数据,也就是不再用参数代表训练数据,比如KNN,无训练过程,而且一定收敛。对于半参数模型,参数一定有,但是一定收敛,最经典的就是神经网络模型,神经网络模型在理论上是可以拟合所有的target function,所有只要训练数据够多,一定可以收敛,因为他的hypothesis set包含了所以的target function。 如何选择算法,需要考虑两个方面:首先是使用这个算法的目的是什么,想要完成什么任务,其次就是数据怎么来,规模多大。开放ml程序一般要经历一下步骤,首先是收集数据,准备输入数据,也就是数据预处理,分析输入数据,训练算法。

    02

    【目标检测】开源 | 吊打一切的 YOLOv4它来了

    当前随着深度学习算法的的快速发展,出现了很多特征提取网络结构,可以提高算法的精度。但是需要在大数据集上对这些特征组合进行实际测试,并对结果进行理论验证。有些特征专门针对某些模型和某些问题,或者只针对小规模数据集;而一些其他的模型,如批处理标准化和剩余连接,适用于大多数模型、任务和数据集等。本文假设这些通用的模型包括:Weighted-Residual-Connections (WRC),Cross-Stage-Partial-connections(CSP), Cross mini-Batch Normalization (CmBN), Self-adversarial-training (SAT) andMish-activation。本文使用的一些新的网络结构包括:WRC,CSP,CmBN,SAT,Mish激活,马赛克数据增强,CmBN,DropBlock正则化和CIoU损失,并结合其中的几项来达到SOTA的表现结果。经过测试在MS COCO数据集上使用Tesla V100 GPU实时处理速度达到65FPS,精度为43.5%AP(65.7%AP50)。

    04

    大话脑影像之二十三:浅谈影像组学

    提笔写下浅谈影像组学几个字,我略微有点忐忑以及不安,史诗般的宏大题目,怕自己HOLD不住,但在这个满世界人工智能的时代,不做点严肃文学科普工作,不是我的风格,毕竟,我下楼吃碗面,老板都跟我说,根据他潜心研究搭建的“基于环境、气候、人群活动等指标的无监督多参数自我学习本店客流量预测模型”显示的结果,我今天会成为他第123个客户,我略带深沉的问他“那你的模型预测准确度有多少?”,老板谦虚的说道“我的模型一直在自我进化,目前大概徘徊在50.9%”,我说兄弟,是时代埋没了你,你应该去BAT做高级算法工程师或者去买彩票,面馆老板虽然嘴上没说,但我知道他心里一定一阵窃喜,因为今天他给我的牛肉面里多放了半块牛肉。

    04

    吞吐量最高提升 400%!百度智能云联合 NVIDIA 完成首批 17 个自动驾驶模型优化

    作者 | 百度智能云技术站 人们对自动驾驶的概念已经不再陌生,但是很多人想象不到,自动驾驶的背后,是一个个依赖模型训练出来的 AI 能力。任何一个小的驾驶体验的提升,背后都是汽车厂商投入大量资源和时间用于模型训练的结果。 在自动驾驶模型研发过程中,汽车厂商一般遵循“模型选型 - 模型训练 - 模型上车”的开发步骤。 在模型选型方面,每年工业界与学术界都会提出大量的模型,不同模型有什么优势,什么样的模型适合自己,厂商在挑选合适的模型上存在挑战。 在模型训练方面,大多数模型更侧重于算法的实现,关注易用性和模型

    03

    深度学习时间序列的综述

    摘要:时间序列一般是指对某种事物发展变化过程进行观测并按照一定频率采集得出的一组随机变量。时间序列预测的任务就是从众多数据中挖掘出其蕴含的核心规律并且依据已知的因素对未来的数据做出准确的估计。由于大量物联网数据采集设备的接入、多维数据的爆炸增长和对预测精度的要求愈发苛刻,导致经典的参数模型以及传统机器学习算法难以满足预测任务的高效率和高精度需求。近年来,以卷积神经网络、循环神经网络和 Transformer 模型为代表的深度学习算法在时间序列预测任务中取得了丰硕的成果。为进一步促进时间序列预测技术的发展,综述了时间序列数据的常见特性、数据集和模型的评价指标,并以时间和算法架构为研究主线,实验对比分析了各预测算法的特点、优势和局限;着重介绍对比了多个基于 Transformer 模型的时间序列预测方法;最后结合深度学习应用于时间序列预测任务存在的问题与挑战对未来该方向的研究趋势进行了展望。(文末附论文下载地址)

    01

    深度学习时间序列的综述

    摘要:时间序列一般是指对某种事物发展变化过程进行观测并按照一定频率采集得出的一组随机变量。时间序列预测的任务就是从众多数据中挖掘出其蕴含的核心规律并且依据已知的因素对未来的数据做出准确的估计。由于大量物联网数据采集设备的接入、多维数据的爆炸增长和对预测精度的要求愈发苛刻,导致经典的参数模型以及传统机器学习算法难以满足预测任务的高效率和高精度需求。近年来,以卷积神经网络、循环神经网络和 Transformer 模型为代表的深度学习算法在时间序列预测任务中取得了丰硕的成果。为进一步促进时间序列预测技术的发展,综述了时间序列数据的常见特性、数据集和模型的评价指标,并以时间和算法架构为研究主线,实验对比分析了各预测算法的特点、优势和局限;着重介绍对比了多个基于 Transformer 模型的时间序列预测方法;最后结合深度学习应用于时间序列预测任务存在的问题与挑战对未来该方向的研究趋势进行了展望。(文末附论文下载地址)

    04
    领券