首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【操作系统不挂科】逐步骤详解——>四种页面置换算法例题<LPU最近最久未使用&OPT最优&FIFO先进先出&CLOCK时钟置换算法>

本章主要内容面向接触过C++的老铁 本博客主要内容主要是解析四种算法 同类型题-前置知识点: 缺页错误 :即缺页 置换数 :即 置换数=缺页数-物理块数 一.FIFO置换算法(先进先出算法)...遇到重复的,就 直接跳过 就行 2.例题演示: 考虑下面的页面引用串: 7,2,3,1,2,5,3,4,6,7,7,1,0,5,4,6,2,3,0,1 假设采用3个帧的请求调页,FIFO置换算法会发生多少次缺页错误...17 遇到重复就跳过 依此类推得到最后结果: 二.LPU置换算法(最近最久未使用置换算法)——往前看 1.基本规则介绍: LRU替换算法: 使用lru算法进行页面置换时,每次替换 最近,最久,未被使用...下面是使用LRU算法进行页面置换时的过程 遇到重复的,就 直接跳过 就行 2.例题演示: 考虑下面的页面引用串: 7,2,3,1,2,5,3,4,6,7,7,1,0,5,4,6,2,3,0,1 假设采用...————————(例题1) 重点:需要淘汰页面时,遇到要选择 两个/两个以上页面以后永不使用的页面谁要淘汰时 ,这时我们用 先进先出原则 ——————————(例题2) 2.例题1演示: 考虑下面的页面引用串

58210
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    A*算法简介及例题

    A*算法和一个例题 A*算法是一种很常用的路径查找和图形遍历算法。它有较好的性能和准确度。今天小编就为大家演示一遍A*算法的运算过程并用A*求解SCIO2005骑士精神的例题。...A*算法 「A *(A-star)」算法是静态路网中求解最短路径最有效的直接搜索方法,也是许多其他问题的常用启发式算法。...小编将用先图示演示一遍A*算法的运行过程,再介绍一段A*算法的代码,帮助小伙伴们更好地理解和运用A*。 如下图所示,需要找到从绿色方块出发,到红色方块的最短路径。蓝色区域为不可通行区域,需要绕道。...「第一步:开始搜索」 将起点周围的7个点纳入一个待检查列表A(起点正下方的点不能经过,因此忽略),这里的思想与前文介绍的BFS算法的思路类似。...所以本题我们给普通的BFS加上一个估价函数成为A*,让我们的搜索更加具有「方向性」,就可以大大减少算法的耗时。

    1.8K20

    4-1.页面置换算法

    三、最近一段时间最久未使用(LRU)置换算法 1.作用 根据页面调入内存的使用情况进行决策,把最近一段时间最久未使用的页面予以淘汰。...最近最久未使用(LRU)的页面置换算法,是根据页面调入内存后的使用情况进行决策的。因为根据程序的局部性原理,刚刚被访问过页面,可能很快还被访问到。...由于无法预测各个页面将来的使用情况,只能利用“最近的的过去”作为“最近的将来”的近似,因此,LRU置换算法是选择最近最久未使用的页面予以淘汰。...根据最近一段时间最久未使用(LRU)置换算法,最近一段时间最久未使用的页面予以淘汰。页号7在最近一段时间内(也就是在页号之前运行的时间里)页号7最久没被使用,所以就淘汰页号7。...但因该算法只有一位访问位,只能用它表示该页是否已经使用过,而置换时是将未使用过的页面换出去,故又把该算法称为最近最久未使用算法NRU(Not Recently Used)。

    3.8K10

    Python算法——最近公共祖先

    Python中的最近公共祖先(Lowest Common Ancestor,LCA)算法详解 最近公共祖先(Lowest Common Ancestor,LCA)是二叉树中两个节点的最低共同祖先节点。...在本文中,我们将深入讨论最近公共祖先问题以及如何通过递归算法来解决。我们将提供Python代码实现,并详细说明算法的原理和步骤。...最近公共祖先问题 给定一个二叉树和两个节点p、q,找到这两个节点的最近公共祖先。 递归算法求解最近公共祖先 递归算法是求解最近公共祖先问题的一种常见方法。...{}".format(p.val, q.val, lca.val)) 输出结果: 节点 5 和节点 1 的最近公共祖先是节点 3 这表示在给定的二叉树中,节点5和节点1的最近公共祖先是节点3。...递归算法在解决最近公共祖先问题时具有简洁而高效的特性。通过理解算法的原理和实现,您将能够更好地处理树结构问题。

    29510

    常用进程调度算法_进程调度算法例题

    (FCFS) 3.短进程优先调度算法(SPF) 4.优先级调度算法 5.时间片轮转调度算法 6.高响应比优先调度算法 7.多级反馈队列调度算法 正文开始 1.前导知识简述 【问】:为什么要进行处理机调度...2.先来先服务调度算法(FCFS) FCFS 调度算法是一种最简单的调度算法,它既可用于作业调度,又可用于进程调度。...3.短进程优先调度算法(SPF) 短作业(进程)优先调度算法是指对短作业(进程)优先调度的算法。...6.高响应比优先调度算法 高响应比优先调度算法是对FCFS调度算法和SPF调度算法的一种综合平衡,同时考虑了每个作业的等待时间和估计的运行时间。...7.多级反馈队列调度算法 多级反馈队列调度算法是时间片轮转调度算法和优先级调度算法的综合与发展,如下图所示。通过动态调整进程优先级和时间片大小,多级反馈队列调度算法可以兼顾多方面的系统目标。

    1.4K11

    Python基础算法解析:K最近邻算法

    K最近邻(K-Nearest Neighbors,简称KNN)是一种简单而有效的监督学习算法,常用于分类和回归问题。本文将介绍KNN算法的原理、实现步骤以及如何使用Python进行KNN的编程实践。...什么是K最近邻算法? K最近邻算法是一种基于实例的学习方法,其核心思想是:如果一个样本在特征空间中的k个最相似(即最近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。...选择最近邻:选取与测试样本距离最近的k个训练样本。 进行分类(或回归):对于分类问题,通过投票机制确定测试样本的类别;对于回归问题,通过求取k个最近邻样本的平均值确定测试样本的输出。...选择最近邻:选取与测试样本距离最近的k个训练样本。 进行分类(或回归):对于分类问题,采用多数表决法确定测试样本的类别;对于回归问题,采用平均值确定测试样本的输出。...y_train) mse = mean_squared_error(y_test, y_pred_regression) print("Mean Squared Error:", mse) 总结 K最近邻算法是一种简单而强大的监督学习算法

    21510

    每周算法练习——最近对问题

    一、最近对问题的解释     看到算法书上有最近对的问题,简单来讲最近对问题要求出一个包含 ? 个点的集合中距离最近的两个点。...二、最近对问题的蛮力解法     蛮力法是最直接的方法,就是求解任意两个点之间的距离,返回坐标和最小的距离 Java代码实现 package org.algorithm.closestpair; /*...double result[] = Util.closestPair(p, length); System.out.println("最近对为:"); System.out.println...三、最近对问题的分治解法     分治的思想是将一个问题划分成几个独立的子问题,分别对子问题的求解,最终将子问题的解组合成原始问题的解。...在最近对问题中,首先通过一维坐标将整个空间分成坐标点个数相同的两个区间,如下图: ?

    1.4K40

    每周算法练习——最近对问题

    一、最近对问题的解释     看到算法书上有最近对的问题,简单来讲最近对问题要求出一个包含 个点的集合中距离最近的两个点。抽象出来就是求解任意两个点之间的距离,返回距离最小的点的坐标,以及最小距离。...二、最近对问题的蛮力解法     蛮力法是最直接的方法,就是求解任意两个点之间的距离,返回坐标和最小的距离 Java代码实现 package org.algorithm.closestpair; /*...i < length; i++) { System.out.println(i + "\t" + p[i].getX() + "\t" + p[i].getY()); } // 计算出最近对...double result[] = Util.closestPair(p, length); System.out.println("最近对为:"); System.out.println...((int) result[0] + "\t" + (int) result[1] + "\t" + Math.sqrt(result[2])); } } 最终的结果 三、最近对问题的分治解法

    1.1K60

    K-最近邻算法(KNN)

    K-最近邻算法(K-Nearest Neighbor,KNN)是一种经典的有监督学习方法,也可以被归为懒惰学习(Lazy Learning)方法。...接着,它会选择距离最小的前K个样本,并统计这K个最近邻样本中每个样本出现的次数。最后,它会选择出现频率最高的类标号作为未知样本的类标号。在KNN算法中,K值的选择是关键。...如果K值较大,则算法分类的近似误差增大,与输入样本距离较远的样本也会对结果产生作用。KNN算法的工作过程如下:1....选择K个距离最近的样本,即K个最近邻。3. 对于分类问题,统计K个最近邻中不同类别的样本数量,并将待分类样本归为数量最多的那个类别。4....对于回归问题,计算K个最近邻的平均值或加权平均值,并将其作为待分类样本的预测值。KNN算法的优点是简单易理解、实现容易,并且对于非线性问题具有较好的表现。

    27110

    k最近邻kNN算法入门

    k最近邻(kNN)算法入门引言k最近邻(kNN)算法是机器学习中最简单、最易于理解的分类算法之一。它基于实例之间的距离度量来进行分类,并且没有显式的训练过程。...算法原理k最近邻算法的原理非常简单:给定一个未知样本,将其与训练集中的实例进行距离度量,取距离最近的k个实例,根据这k个实例的类别进行投票,将未知样本归为票数最多的类别。...结论k最近邻(kNN)算法是一种简单而强大的分类算法,它不需要显式的训练过程,只需根据实例之间的距离进行分类。本文介绍了k最近邻算法的基本原理和应用步骤,并通过示例代码演示了算法的具体应用过程。...希望读者通过本文对k最近邻算法有更深入的理解,能够在实际问题中灵活运用该算法进行分类任务。...k最近邻(kNN)算法是一种简单而有效的分类算法,但它也存在一些缺点。下面将详细介绍k最近邻算法的缺点,并列出一些与kNN类似的算法。

    34220
    领券