首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

自适应采样非局部神经网络的点云鲁棒操作

原始点云数据不可避免地从3D传感器或在重建算法中包含异常值。本文提出了一种用于鲁棒点云处理的新型端到端网络,称为 PointASNL,可以有效地处理带噪声的点云。我们方法中的关键部分是自适应采样(AS)模块。它首先从最远点采样点的周围对点的邻域加权,然后在整个点云中自适应的调整采样。AS模块不仅有益于点云的特征学习,而且缓解受异常值的影响。为了进一步捕捉邻域信息和长期依赖于采样点,我们从非局部操作的角度出发,提出了局部-非局部 (local-Nonlocal, L-NL) 模块。这种L-NL模块使学习过程对噪声不敏感。大量的实验证明了在分类和语义分割任务上,在合成数据,室内、室外数据,是否有噪声的数据,都有良好性能和鲁棒性。并且在有大量噪声的真实户外数据集SemanticKITTI上,明显优于以前的方法。代码发布在:

01

2017-NIPS-PointNet++:Deep Hierarchical Feature Learning on Point Sets in a Metric Space

这篇文章[1]是 PointNet 的改进版。PointNet 是直接将神经网络用于点云数据处理的先锋,虽然 PointNet 在 3D 任务上取得不错的效果,但其还是存在不足。PointNet 忽略了点云数据间的空间局部结构,从而不能很好地识别更细粒度的模型,也不能很好地泛化到复杂的场景。PointNet++ 则针对这个问题,在 PointNet 基础上引入了层级式的嵌套结构来捕获局部特征。此外,真实的点云数据采集往往是不均匀的(因为采样时是从传感器点状发出信号的,自然离传感器近的采样密度高,远的密度低),而这会导致在均匀采样的点云数据集下训练的模型性能产生明显下降。作者在 PointNet++ 中提出了一种新的针对集合数据的学习层,其可以自适应地结合不同尺度下学习到的特征。广泛的实验数据显示 PointNet++ 可以有效且鲁棒地学习到深层的点云数据集合特征,在 3D 点云任务上达到了超越已有的 SOTA 性能。

02

使用主要协变量回归改进样本和特征选择(CS)

从大量候选项中选择最相关的功能和示例是一项在自动数据分析文本中经常发生的任务,它可用于提高模型的计算性能,而且通常也具有可传输性。在这里,我们重点介绍两个流行的子选择方案,它们已应用于此目的:CUR 分解,它基于要素矩阵的低级近似值和最远点采样,它依赖于最多样化的样本和区分特征的迭代标识。我们修改这些不受监督的方法,按照与主体共变量回归(PCovR)方法相同的精神,纳入受监督的组件。我们表明,合并目标信息可提供在监督任务中性能更好的选择,我们用山脊回归、内核脊回归和稀疏内核回归来演示这些选择。我们还表明,结合简单的监督学习模型可以提高更复杂的模型(如前馈神经网络)的准确性。我们提出进行调整,以尽量减少执行无人监督的任务时任何子选择可能产生的影响。我们演示了使用 PCov-CUR和 PCov-FPS在化学和材料科学应用上的显著改进,通常将实现给定回归精度水平所需的特征和样本数减少 2 个因子和样本数。

00
领券