R对象转化为data.table,比as.data.table快,因为以传地址的方式直接修改原对象,没有拷贝 copy(x) 深度拷贝一个data.table,x即data.table对象。...sep2,对于是list的一列,写出去时list成员间以sep2分隔,它们是处于一列之内,然后内部再用字符分开; eol,行分隔符,默认Windows是"\r\n",其它的是"\n"; na,na..."] #左联接 X[DT, on="x"] #右联接 DT[X, on="x", nomatch=0] #内联接,nomatch=0表示不返回不匹配的行,nomatch=NA表示以NA返回不匹配的值...,-Inf用下一行的值填充,输入某数字时,表示能够填充的距离,near用最近的行填充 rollends 填充首尾不匹配的行,TRUE填充,FALSE不填充,与roll一同使用 which TRUE...返回匹配的行号,NA返回不匹配的行号,默认FALSE返回匹配的行 .SDcols 取特定的列,然后.SD就包括了页写选定的特定列,可以对这些子集应用函数处理 allow.cartesian FALSE
通常来说,R语言中存在: NA NULL NaN Inf/-Inf 这四种数据类型在R中都有相应的函数用以判断。 NA NA即Not available,是一个长度为1的逻辑常数,通常代表缺失值。...另外,NA和“NA”不可以互换。 NULL NULL是一个对象(object),当表达式或函数产生无定义的值或者导入数据类型未知的数据时就会返回NULL。...drop_na(df,X1) # 去除X1列的NA 2 填充法 用其他数值填充数据框中的缺失值NA。...replace_na(df$X1,5) # 把df的X1列中的NA填充为5 2.3 fill() 使用tidyr包的fill()函数将上/下一行的数值填充至选定列中NA。...fill(df,X1,.direction = "up") # 将NA下一行的值填充到df的X1列中的NA 除此之外,类似原理的填充法还有均值填充法(用该变量的其余数值的均值来填充)、LOCF(last
一 查看数据集的缺失情况 R中使用NA代表缺失值,用is.na识别缺失值,返回值为TRUE或FALSE。...)) mean(is.na(sleep)) 2)查看数据集特定变量(列)有多少缺失值及百分比 sum(is.na(sleep$Sleep)) mean(is.na(sleep$Sleep)) 3)数据集中多个行包含缺失值...左侧第一列,’42’代表有42条数据无缺失值,第一个’9’代表9条数据Dream和NonD同时缺失。最后一行返回的就是每一个变量(列)对应的缺失数目,38为一共有多少缺失值。下图同样的意思。 ?...三 处理缺失值 当充分了解了缺失值的情况后,可以根据数据量的大小,以及某一列是否为重要的预测作用变量,对数据集中的NA行和某些NA列进行处理。...# 相关系数 当然根据数据和目的的不同,采用的缺失值处理方式肯定不一样,需要我们对数据和需求有足够的认识,做出比较好的判断和处理。
,默认Windows是"\r\n",其它的是"\n"; na,na 值的表示,默认""; dec 小数点的表示,默认"...,默认_; subset 指定要铸造的子集;利用; margins 函数尚不能应用(作者还没写好),预计设定编辑汇总方向; fill 填充缺失值; drop 设置成FALSE...显示没有联合成功的行列 value.var 填充值的列,默认会猜测 现在我需要取数据DT的v1,v2两列相同的情况作为汇总的一类,对它们的v4值取平均,转换如下,...,默认FALSE,像rbind一样,直接bind,当时TRUE的时候,至少要有一个对象的一列要存在行名; fill 如果TRUE,缺失的列用NA填充,这个时候bind的对象可以不同列数,并且use.names...; nomatch 不匹配时返回的值,强制转化整型 好了,写到这里写的都有点累了,再介绍最后一个函数,有时候我们需要了解你写的这个脚本运行所花费的时间,这个时候保存开始运行时间和结束运行时间
数据结构是指在计算机中存储和组织数据的方式,不同的数据结构有不同的特点和适用场景。R语言中的常用数据结构,包括向量、矩阵、数组、列表和数据框。...矩阵有两个维度,分别表示行数和列数,可以用dim()函数来获取。矩阵应用举例:创建矩阵创建矩阵的一种常用方法是使用matrix()函数,它可以将一个向量或多个向量组合成一个矩阵。...matrix()函数的参数有:data:表示要组合成矩阵的数据,可以是一个或多个向量。nrow:表示矩阵的行数,必须是一个正整数。ncol:表示矩阵的列数,必须是一个正整数。...rbind()和cbind()函数,它们可以将多个向量或矩阵按行或按列组合成一个新的矩阵。...6 NA也可以使用逻辑表达式或条件语句来访问矩阵中满足特定条件的元素。
()和notnull()函数可用于检查null值,它们都会返回一个布尔值数组: data = pd.Series([1, np.nan, 'hello', None]) data.isnull() 结果如下...null值 使用dropna()来删除NA值,使用fillna()填充NA值。...df.dropna() 如果axis为1,则删除出现NA的列: df.dropna(axis='columns') 但是这种处理方式还是过于粗暴,有没有更为精细的控制呢?...Pandas提供了更为精细的控制,通过参数how和thresh来控制。 how的默认值为any, 也就是说任意行或者列只要出现NA值就删除,如果修改为all,则只有所有值都为NA的时候才会删除。...df.dropna(axis='rows', thresh=3) 填充null值 有些时候,并不想抛弃NA值,而想填充成其他的值,Pandas提供了fillna()方法: data = pd.Series
返回特定option的当前值 包操作(package) .libPaths() 查询或安装包的路径 library() 查看当前可用的包或调入某个包 attatch() 将一个包或...名字,"#rrggbb",palette())转换成red,green,blue值 palette() 调色板 rainbow() 产生渐变的彩虹色 特定画图函数(particular...使用R的rnorm函数产生样本量为1000的标准正态分布采样,用每一种normality test函数分别检验其正态性,算出一个p-value;循环10000次,每一种test都产生一个长为10000的由...,如果每次函数操作只产生一个元素 tapply () 对所给变量按照指定的分组方式分别运行一个函数 mapply rapply eapply range() 返回所有指定对象的最大和最小值...frame中不包含NA值的行的行号
在散点图中,随机抖动点以减少过度绘制 尺度:每个几何属性都有一个函数,称为尺度;比例控制从数据到几何属性的映射,以确保数据值对该几何属性有效。此外,在统计变换之前执行缩放。...使用qlot(),以一次创建所有图的方式创建一个图;使用gglot(),按块和层函数创建一个图。Ggplot2补充qlot()的原因是为了减少所需的打字量。...因为即使我们使用了许多缺省值,ggplot2的显式语法语法也相当冗长,这使得快速尝试不同的绘图变得困难。它还模仿plot()函数的语法,使ggplot2对于熟悉Base R图形的用户更容易使用。...对象p是类ggPlot的R S3对象,由数据和其他包含关于该图的信息的组件组成。我们可以使用Summary()函数访问信息的详细信息,以跟踪确切使用了哪些数据以及变量是如何映射的。...公式可以是x~y,这表示将绘图分割成变量x的每个值的一行和变量y的每个值的一列。实现facet_grid(x~y)函数将生成一个矩阵,其中的行和列由x和y的可能组合组成。公式可以是x~.
介绍tidyr包中五个基本函数的简单用法:长转宽,宽转长,合并,分割,NA简单填充。 长数据就是一个观测对象可由多行组成,而宽数据则是一个观测仅由一行组成。...()函数; gather(data, key, value, … , na.rm = FALSE, convert = FALSE): data:需要被转换的宽形表 key:将原数据框中的所有列赋给一个新变量...key value:将原数据框中的所有值赋给一个新变量value ......五 缺失值填充 示例数据集,增加NA值 NAdata NA,4,7),score=c(89,98,NA...na.rm = TRUE) 计算y的众数 y_mode <- as.character(NAdata 用特定值进行NA填充: NAdata2 na(data = NAdata, replace
Python 中使用 unique 函数查看唯一值。 查看唯一值 Unique 是查看唯一值的函数,只能对数据表中的特定列进行检查。下面是代码,返回的结果是该列中的唯一值。...对于空值的处理方式有很多种,可以直接删除包含空值的数据,也可以对空值进行填充,比如用 0 填充或者用均值填充。还可以根据不同字段的逻辑对空值进行推算。 ...下面的代码和结果中可以看到使用 dropna 函数后,包含 NA 值的两个字段已经不见了。返回的是一个不包含空值的数据表。 ...1#使用数字 0 填充数据表中空值 2df.fillna(value=0) 我们选择填充的方式来处理空值,使用 price 列的均值来填充 NA 字段,同样使用 fillna 函数,在要填充的数值中使用...1#按特定列的值排序 2df_inner.sort_values(by=['age']) sort_values Sort_index 函数用来将数据表按索引列的值进行排序。
我们也可以点开每一个part去看具体的文件内容,但一般情况下没人这么干…… 同样的,因为这里以json方式写入了,所以读的时候就要以json方式读。完整的按照这个文件夹的地址读入即可。...Spark实现空值填充 空值填充是一个非常常见的数据处理方式,核心含义就是把原来缺失的数据给重新填上。因为数据各式各样,因为处理问题导致各种未填补的数据出现也是家常便饭。...不同的数据自然要有不同的处理方式,因此我们这里也会介绍使用不同的方式进行填充时,对应的不同的代码。在这一部分,我们会介绍以平均数,中位数,众数和自己手动处理方式进行空值填充的方式。...Request 4: 对某一列中空值的部分填成这一列已有数据的众数。 按照“频率趋近于概率”的统计学思想,对缺失值填充为众数,也是一个非常常见的操作,因为众数是一类数据中,出现的频率最高的数据。...这里我们以平均值举一个例子。 Request 6: 对多列进行空值填充,填充结果为各列已有值的平均值。
识别缺失值 在 R 中,缺失值用 NA 表示,是“Not Available”的缩写。函数 is.na( ) 可以用于识别缺失值,其返回结果是逻辑值 TRUE 或 FALSE。...mean(na.omit(height)) 注意,这里 na.omit( ) 是一个独立的函数,它能忽略输入对象中的缺失值,而 na.rm 只是计算描述性统计量的函数里的一个内部参数。...此外,函数 complete.cases( ) 可以用来识别矩阵或数据框中没有缺失值的行,它的返回值是 TRUE 或 FALSE。...PredictorMatrix 里,每一行代表含有缺失值的变量名,如果该行对应的某一列元素为 1,代表该列变量被用于建模预测。...从上面的输出结果中可以看出,对于每一个变量,其余变量都被用于它的缺失值预测。函数 mice( ) 的输出结果是一个列表,其中的对象 imp 也是一个列表,存放的是每个变量缺失值的插补值。
基本数据对象 向量(vector), 见下节 矩阵(matrix): 更一般的说数组是向量在多维情况下的一般形式。事实上它们是可以被两个或更多的指标索引的向量,并且以特定的方式被打印出来。...比如:如果对象类别"data.frame"则会以特定方式处理。 unclass()可以去除对象的类别。 summary()可以查看对象的基本信息(min, max, mean, etc.)...数组的生成 如果一个向量需要在R中以数组的方式被处理,则必须含有一个维数向量作为它的dim属性。 维度向量由dim()指定,例如,z是一个由1500个元素组成的向量。...在R中,自由变量的值由函数被创建的环境中与其同名的第一个变量值决定(我理解为最近的同名变量),这种方式被称为词汇式范畴(lexical scope)。 而在S中,该值由同名的全局变量决定。...3 图形参数列表 A 图形元素 R图表由点、线、文本和多边形(填充区)组成。下面的图形参数控制了图形元素的绘制: pch="+" 用来绘点的字符。
在数据框中, 列可以是不同的对象。 可以把数据框看作是一个 行表示观测个体并且(可能)同时拥有数值变量和 分类变量的 `数据矩阵' ,行和列可以通过矩阵的索引方式进行访问。...对于两个有相同列的数据框,可以用merge()函数进行合并,可以指定安装哪一个列进行合并: > x NA,NA,3,4,5), k2 = c(1,NA,NA,4,5...函数read()和write()只能处理矩阵或向量的特定列,而read.table()和write.table()可以处理包含行、列标签的数据框。...字符向量 R中甚至允许以一个字符向量作为输入或输出。使用textConnection()函数创建到字符向量的连接。...这些函数有个以字符串作为输入的参数,在 函数调用时会打开一个文件连接,但显式地打开文件连接允许一个文件 可以连续地以不同格式读入。
pandas对象的所有描述性统计信息默认情况下是排除缺失值的。 pandas对象中表现缺失值的方式并不完美,但是它对大部分用户来说是有用的。...处理缺失值的相关函数列表如下: dropna:根据每个标签的值是否是缺失数据来筛选轴标签,并根据允许丢失的数据量来确定阈值 fillna:用某些值填充缺失的数据或使用插值方法(如“ffill”或“bfill...你可能想要删除全部为NA或包含有NA的行或列。...3.0 如果要用同样的方式去删除列,传入参数axis=1: In: data[4] = NA data Out: 0 1 2 4 0 1.0 6.5 3.0 NaN 1...value:标量值或字典型对象用于填充缺失值 method:插值方法,如果没有其他参数,默认是'ffill' axis:需要填充的轴,默认axis=0 inplace:修改被调用的对象,而不是生成一个备份
Isnull是Python中检验空值的函数 #检查数据空值 df.isnull() ? #检查特定列空值 df['price'].isnull() ?...Python中处理空值的方法比较灵活,可以使用 Dropna函数用来删除数据表中包含空值的数据,也可以使用fillna函数对空值进行填充。...也可以使用数字对空值进行填充 #使用数字0填充数据表中空值 df.fillna(value=0) 使用price列的均值来填充NA字段,同样使用fillna函数,在要填充的数值中使用mean函数先计算price...列当前的均值,然后使用这个均值对NA进行填充。...在Python中使用split函数实现分列在数据表中category列中的数据包含有两个信息,前面的数字为类别id,后面的字母为size值。中间以连字符进行连接。
填充缺失值:填充缺失值是比较流行的处理方式,这种方式一般会将诸如平均数、中位数、众数、缺失值前后的数填充至空缺位置。...插补缺失值:插补缺失值是一种相对复杂且灵活的处理方式,这种方式主要基于一定的插补算法来填充缺失值。...常见的插补算法有线性插值和最邻近插值:线性插值是根据两个已知量的直线来确定在这两个已知量之间的一个未知量的方法,简单地说就是根据两点间距离以等距离方式确定要插补的值;最邻近插值是用与缺失值相邻的值作为插补的值...| 平均数填充到指定的列 : # 缺失值补全 | 平均数填充到指定的列 # 计算A列的平均数,并保留一位小数 col_a = np.around(np.mean(na_df['A']), 1) # 计算...D列的平均数,并保留一位小数 col_d = np.around(np.mean(na_df['D']), 1) # 将计算的平均数填充到指定的列 na_df.fillna({'A':col_a, 'D
如果你把金属它铸成一个模子,它就会变宽(wide-format)。 二、什么是宽表格和长表格 示例数据说明:例子使用内置于R中的空气质量数据集(airquality)。...比如我们会记录下每个月每天每个空气指标的值,而每个月的天数不一定相等,所以就会出现第三列记录日期。...一般我们实验记录的数据格式(大多习惯用宽表格记录数据)和我们后期用R绘图所用到的数据格式往往不一样,例如ggplot2、plyr,还有大多数建模函数lm()、glm()、gam()等经常会使用长表格数据来作图...易错点 当每个单元格有多个值时(比如我们想以月而不是天来查看空气指标值,而每个月有多个数据),我们可能会犯一个错。...当我们转换数据并且每个单元格有多个值时,还需要使用fun.aggregate=告知dcast以什么方式重新组合数据,是平均值(mean)、中位数(median)还是总和(sum)。
⑵特殊值 ①缺失值 在实际研究中,缺失值是难以避免的(不能将缺失值NA当做0来对待),可以使用函数is.na()来判断是否存在缺失值,该函数可以作用于向量、矩阵、数据框等对象,返回值为对应的逻辑值,如下所示...: 缺失值是无法进行比较运算的,很多函数都有参数na.rm选项来移除缺失值,如下所示: 可以使用函数na.omit()来移除变量中缺失值或矩阵、数据框含有缺失值的行,如下所示: ②日期值 在R中,...日期往往以数值形式存储,日期值可以运算比较,但是在读取数据时往往读取为字符串格式,as.Date()函数可以将字符型日期转换为数值型进行储存,如下所示: 可以看到在R中日期值是以yyyy-mm-dd形式储存...2.2基础绘图 R是一个非常强大的数据可视化平台,使用R内置的作图函数可以轻松的构建各种类型的图形,此外还有各种作图包来使得图形更加“惊艳”。...R最常使用的作图函数为plot(),下面通过一个简单的例子来介绍R中图形构建方法: attach(mtcars) #加载R内置示例数据(这是一个数据框,可自己查看) plot(wt, mpg) abline
领取专属 10元无门槛券
手把手带您无忧上云