首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值

一、前言 前几天在Python星耀交流群有个叫【在下不才】的粉丝问了一个Pandas的问题,按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值,这里拿出来给大家分享下,一起学习...888] df = pd.DataFrame({'lv': lv, 'num': num}) def demean(arr): return arr - arr.mean() # 按照"lv"列进行分组并计算出..."num"列每个分组的平均值,然后"num"列内的每个元素减去分组平均值 df["juncha"] = df.groupby("lv")["num"].transform(demean) print(df...(df) # 直接输出结果,省略分组平均值列 df["juncha"] = df["num"] - df.groupby('lv')["num"].transform('mean') print(df)...这篇文章主要分享了Pandas处理相关知识,基于粉丝提出的按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值的问题,给出了3个行之有效的方法,帮助粉丝顺利解决了问题。

3K20

学徒讨论-在数据框里面使用每列的平均值替换NA

最近学徒群在讨论一个需求,就是用数据框的每一列的平均数替换每一列的NA值。但是问题的提出者自己的代码是错的,如下: ? 他认为替换不干净,应该是循环有问题。...#我好像试着写出来了,上面的这个将每一列的NA替换成每一列的平均值。 #代码如下,请各位老师瞅瞅有没有毛病。...所以我在全局环境里面设置了一个空的list,然后每一列占据了list的一个元素的位置。list的每个元素里面包括了NA的横坐标。...答案二:使用Hmisc的impute函数 我给出的点评是:这样的偷懒大法好!使用Hmisc的impute函数可以输入指定值来替代NA值做简单插补,平均数、中位数、众数。...a=1:1000 a[sample(a,100)]=NA dim(a)=c(20,50) a # 按照列,替换每一列的NA值为该列的平均值 b=apply(a,2,function(x){ x[is.na

3.6K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Excel与pandas:使用applymap()创建复杂的计算列

    标签:Python与Excel,pandas 我们之前讨论了如何在pandas中创建计算列,并讲解了一些简单的示例。...通过将表达式赋值给一个新列(例如df['new column']=expression),可以在大多数情况下轻松创建计算列。然而,有时我们需要创建相当复杂的计算列,这就是本文要讲解的内容。...图1 创建一个辅助函数 现在,让我们创建一个取平均值的函数,并将其处理/转换为字母等级。 图2 现在我们要把这个函数应用到每个学生身上。那么,在列中对每个学生进行循环?不!...注意下面的代码,我们只在包含平均值的三列上应用函数。因为我们知道第一列包含字符串,如果我们尝试对字符串数据应用letter_grade()函数,可能会遇到错误。...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三列中的每一列上分别使用map(),而applymap()能够覆盖整个数据框架(多列)。

    3.9K10

    Python北京空气质量数据处理

    假设PM指数最高500,对PM_Dongsi,PM_Dongsihuan,PM_Nongzhanguan三列超过500的数据,修改为500PM指数修改cbwd列中的值为cv的单元格,其值用后项数据填充并计算北京空气质量...Nan值,再后项数据填充,使用的时候发现后项数据填充只适合数值类型,不适合文本类型,那只好遍历了。...(axis=1)为求行平均值 df['PM_ave'] = df.iloc[:, 1:5].mean(axis=1) # 保存到文件,其中以'year'分组,计算'PM_ave'列的平均值。...6, 7, 8, 9]) # 新建平均值列,并将平均值写入 # 其中,iloc[:, 2:6]指第3到第6列,mean(axis=1)为求行平均值 df['PM_ave'] = df.iloc[:,...2:6].mean(axis=1) # 保存到文件,其中以'year'和'month'分组,计算'PM_ave'列的平均值。

    2K20

    Power BI: 使用计算列创建关系中的循环依赖问题

    文章背景: 在表缺少主键无法直接创建关系,或者需要借助复杂的计算才能创建主键的情况下,可以利用计算列来设置关系。在基于计算列创建关系时,循环依赖经常发生。...产品的价格有很多不同的数值,一种常用的做法是将价格划分成不同的区间。例如下图所示的配置表。 现在对价格区间的键值进行反规范化,然后根据这个新的计算列建立一个物理关系。...下面对因为与计算列建立关系而出现的循环依赖进行分析,包括为什么DISTINCT可以消除循环依赖。...2 原因分析 让我们回顾一下计算列公式的简写版本(Sale表的PriceRangeKey列): PriceRangeKey = CALCULATE ( VALUES( PriceRanges...3 避免空行依赖 创建可能用于设置关系的计算列时,都需要注意以下细节: 使用DISTINCT 代替VALUES。 使用ALLNOBLANKROW代替ALL。

    82320

    数据处理技巧 | 带你了解Pandas.groupby() 常用数据处理方法

    查看A分组情况 Applying数据计算操作 一旦分组后,我们就可对分组后的对象进行Applying应用操作,这部分最常用的就是Aggregations摘要统计类的计算了,如计算平均值(mean),和(...sum)等,下面我们通过实例解释:还是以上方数据为主,这次我们根据Year列进行分组: grouped = test_dataest.groupby("Year") 在对分组后的grouped对象,我们使用...aggregate对多列操作 除了sum()求和函数外,我们还列举几个pandas常用的计算函数,具体如下表: 函数(Function) 描述(Description) mean() 计算各组平均值 size...即同时计算平均值(mean)、求和(sum)。答案是当然可以的。...同时计算多个结果 可能还有小伙伴问“能不能将聚合计算之后的新的结果列进行重命名呢?”,该操作在实际工作中经常应用的到,如:根据某列进行统计,并将结果重新命名。

    3.8K11

    Pandas速查卡-Python数据科学

    它不仅提供了很多方法和函数,使得处理数据更容易;而且它已经优化了运行速度,与使用Python的内置函数进行数值数据处理相比,这是一个显著的优势。...(col) 从一列返回一组对象的值 df.groupby([col1,col2]) 从多列返回一组对象的值 df.groupby(col1)[col2] 返回col2中的值的平均值,按col1中的值分组...(平均值可以用统计部分中的几乎任何函数替换) df.pivot_table(index=col1,values=[col2,col3],aggfunc=max) 创建一个数据透视表,按col1分组并计算...col2和col3的平均值 df.groupby(col1).agg(np.mean) 查找每个唯一col1组的所有列的平均值 data.apply(np.mean) 在每个列上应用函数 data.apply...df.describe() 数值列的汇总统计信息 df.mean() 返回所有列的平均值 df.corr() 查找数据框中的列之间的相关性 df.count() 计算每个数据框的列中的非空值的数量 df.max

    9.2K80

    DataFrame和Series的使用

    Series的一些属性 Series常用方法 针对数值型的Series,可以进行常见计算 share = data.share share.mean() # 计算平均值 share.max...share.describe() # 一次性计算出 每一列 的关键统计量 平均值, 标准差, 极值, 分位数 movie.head(10) # 默认取前5条数据 查看数据类型及属性...,求平均,求每组数据条目数(频数)等 再将每一组计算的结果合并起来 可以使用DataFrame的groupby方法完成分组/聚合计算 df.groupby(by='year')[['lifeExp','...pop','gdpPercap']].mean() # 根据year分组,查看每年的life平均值,pop平均值和gpd平均值,用mean做聚合运算 也可以根据两个列分组,形成二维数据聚合 df.groupby...(['continent'])['country'].nunique() df.groupby('continent')['lifeExp'].max() # 可以使用 nunique 方法 计算Pandas

    10910

    1w 字的 pandas 核心操作知识大全。

    (col) #从一个栏返回GROUPBY对象 df.groupby([col1,col2]) # 返回来自多个列的groupby对象 df.groupby...(col1)[col2] # 返回中的值的平均值 col2,按中的值分组 col1 (平均值可以用统计模块中的几乎所有函数替换 ) df.pivot_table(index...=col1,values=[col2,col3],aggfunc=mean) # 创建一个数据透视表组通过 col1 ,并计算平均值的 col2 和 col3 df.groupby(col1).agg...(np.mean) # 在所有列中找到每个唯一col1 组的平均值 df.apply(np.mean) #np.mean() 在每列上应用该函数...(":","-") 12.replace 将指定位置的字符,替换为给定的字符串(接受正则表达式) replace中传入正则表达式,才叫好用; 先不要管下面这个案例有没有用,你只需要知道,使用正则做数据清洗多好用

    14.8K30

    小蛇学python(18)pandas的数据聚合与分组计算

    image.png 变量grouped是一个GroupBy对象。它还没有进行计算,但是已经分组完毕。 ?...image.png 以上是对已经分组完毕的变量的一些计算,同时还涉及到层次化索引以及层次化索引的展开。 groupby还有更加简便得使用方法。 ?...image.png 你一定注意到,在执行上面一行代码时,结果中没有key2列,这是因为该列的内容不是数值,俗称麻烦列,所以被从结果中排除了。...非NA值的积 first last 第一个和最后一个非NA值 更加高阶的运用 我们拿到一个表格,想添加一个用于存放各索引分组平均值的列。...image.png 这样就实现了,people表格里的数据减去同类型数据平均值的功能。这个功能叫做距平化,是一个经常使用的操作。

    2.4K20

    R用户要整点python--pandas进阶

    ,但在R语言: NaN表示非数值(Not a Number),计算0/0或者计算负数的平方根时会得出。...将treatment_a列里面的NA填充上该列的平均值,传递给a_fill列: df.a_fill = df.treatment_a.fillna(a_mean) df ## name treatment_a...算咯,就比划一下代码) 1.输出tips 数据框中total_bill为缺失值的行 2.计算total_bill列的平均值 3.用这个值填充'total_bill'列的平均值 # Print the.../每列的函数运算结果,例如平均值 R的apply是1表示行,2表示列 python里的apply是0表示行,1表示列 4.tidy数据 非常熟悉的配方,这是哈德雷大佬提出的概念: R语言里的宽变长函数有好几个...1.计算每个性别('sex')的平均'tip' 2.计算每个性别('sex')和('time'列)组合的平均'tip' # Mean tip by sex print(tips____(____)[

    4410

    Pandas学习笔记05-分组与透视

    pandas提供了比较灵活的groupby分组接口,同时我们也可以使用pivot_table进行透视处理。 1.分组 分组函数groupby,对某列数据进行分组,返回一个Groupby对象。 ?...分组 在进行groupby分组后,我们可以对分组对象进行各种操作,比如求分组平均值mean() ? 分组统计 很多时候,我们需要返回dataframe型数据进行二次操作 ?...使用函数进行分组 2.聚合 常见的聚合函数如下: 计算组的平均值 ? 演示数据 简单的分组聚合操作 ? 分组聚合 同时使用多种聚合方法 ? 同时使用多种聚合方法 对聚合结果列进行命令 ?...values:要汇总的一列或一列列表。 index:与数据或它们的列表具有相同长度的列,Grouper,数组。在数据透视表索引上进行分组的键。如果传递了数组,则其使用方式与列值相同。...aggfunc:用于汇总的函数,默认为numpy.mean。 ? 演示数据 数据透视操作 ? 简单的数据透视对不同列使用不同的方法 ? 对不同列使用不同方法 margins增加合计项 ?

    1K30

    R用户要整点python

    于是想办法修改了一下 先找到原本的ctrl+回车快捷键,清除,然后找到F9,改成ctrl+回车。 2.示例数据 seaborn中有一个flights,但只有3列,不是练习中用的数据。...可以分组计算多个变量的某一统计量 aggregates可以分组计算多个变量计算多个统计量 1.添加total_delay列,内容是把dep_delay列和arr_delay列相加 2.计算每个航班的total_delay...3.计算每个季节的出发和到达延误的平均值,并重置索引。 4.计算每个始发地的出发、到达和总延误的平均值和标准差。...后面选要计算的列时如果使用了一个中括号,会遇到报错: ValueError: Cannot subset columns with a tuple with more than one element....解决办法是把列名变成列表,也就是使用两个中括号。

    7810

    强烈推荐Pandas常用操作知识大全!

    ","score"],index="positionId") # 同时对两列进行计算 df[["salary","score"]].agg([np.sum,np.mean,np.min]) # 对不同列执行不同的计算...(col) #从一个栏返回GROUPBY对象 df.groupby([col1,col2]) # 返回来自多个列的groupby对象 df.groupby...(col1)[col2] # 返回中的值的平均值 col2,按中的值分组 col1 (平均值可以用统计模块中的几乎所有函数替换 ) df.pivot_table(index...=col1,values=[col2,col3],aggfunc=mean) # 创建一个数据透视表组通过 col1 ,并计算平均值的 col2 和 col3 df.groupby(col1).agg...(":","-") 12.replace 将指定位置的字符,替换为给定的字符串(接受正则表达式) replace中传入正则表达式,才叫好用;- 先不要管下面这个案例有没有用,你只需要知道,使用正则做数据清洗多好用

    15.9K20

    sas文本挖掘案例:如何使用SAS计算Word Mover的距离

    p=6181 Word Mover的距离(WMD)是用于衡量两个文档之间差异的距离度量,它在文本分析中的应用是由华盛顿大学的一个研究小组在2015年引入的。...WMD是Word Mover距离度量(EMD)的一个特例,这是一个众所周知的问题。 如何用SAS计算Word Mover的距离? SAS / OR是解决问题的工具。...现在让我们看看如何使用SAS / OR解决这个运输问题。 节点的权重和节点之间的距离如下。 ?...图-2运输问题流程图 如何用SAS计算Word Mover的距离 本文从Word嵌入到文档距离,通过删除WMD的第二个约束来减少计算,提出了一个名为放松的Word Mover距离(RWMD)的新度量。...由于我们需要读取文字嵌入数据,因此我将向您展示如何使用SAS Viya计算两个文档的RWMD。

    1.2K20

    《利用Python进行数据分析·第2版》第10章 数据聚合与分组运算10.1 GroupBy机制10.2 数据聚合10.3 apply:一般性的“拆分-应用-合并”10.4 透视表和交叉表10.5 总

    在本章中,你将会学到: 使用一个或多个键(形式可以是函数、数组或DataFrame列名)分割pandas对象。 计算分组的概述统计,比如数量、平均值或标准差,或是用户定义的函数。...data1列的平均值。...例如,我们可以调用GroupBy的mean方法来计算分组平均值: In [14]: grouped.mean() Out[14]: key1 a 0.746672 b -0.537585 Name...例如,在前面那个数据集中,如果只需计算data2列的平均值并以DataFrame形式得到结果,可以这样写: In [31]: df.groupby(['key1', 'key2'])[['data2']...下面是一个实现办法,我们先创建一个函数,用它计算每列和SPX列的成对相关系数: In [122]: spx_corr = lambda x: x.corrwith(x['SPX']) 接下来,我们使用pct_change

    5K90

    pandas基础:使用Python pandas Groupby函数汇总数据,获得对数据更好地理解

    跟踪信用卡消费的简单工具 现在几乎每个人都有信用卡,使用非常方便,只需轻触或轻扫即可完成交易。然而,在每个付款期结束时,你有没有想过“我到底把这些钱花在哪里了?”。...将文本转换为datetime类型的另一种方法是使用以下命令: df['Transaction Date'] =pd.to_datetime(df['Transaction Date']) 下面的快速检查显示有...图3 实际上,我们可以使用groupby对象的.agg()方法将上述两行代码组合成一行,只需将字典传递到agg()。字典键是我们要处理的数据列,字典值(可以是单个值或列表)是我们要执行的操作。...它看起来像一个包含文本和数据框架的元组……让我们通过打印GroupBy对象中每个项目的类型来确认这一点。 图11 现在我们已经确认了!GroupBy对象包含一组元组(每组一个)。...要计算“Fee/Interest Charge”组的总开支,可以简单地将“Debit”列相加。 图14 可能还注意到,我们可以使用.loc方法获得与上面的groupby方法完全相同的结果。

    4.7K50

    pandas分组聚合转换

    分组的一般模式 分组操作在日常生活中使用极其广泛: 依据性别性别分组,统计全国人口寿命寿命的平均值平均值 依据季节季节分组,对每一个季节的温度温度进行组内标准化组内标准化 从上述的例子中不难看出,想要实现分组操作...的分组依据都是直接可以从列中按照名字获取的,如果希望通过一定的复杂逻辑来分组,比如根据学生体重是否超过总体均值来分组,同样还是计算身高的均值。...对象有一些缺点: 无法同时使用多个函数 无法对特定的列使用特定的聚合函数 无法使用自定义的聚合函数 无法直接对结果的列名在聚合前进行自定义命名 可以通过agg函数解决这些问题: 当使用多个聚合函数时,需要用列表的形式把内置聚合函数对应的字符串传入...,需要注意传入函数的参数是之前数据源中的列,逐列进行计算需要注意传入函数的参数是之前数据源中的列,逐列进行计算。...当apply()函数与groupby()结合使用时,传入apply()的是每个分组的DataFrame。这个DataFrame包含了被分组列的所有值以及该分组在其他列上的所有值。

    12010

    在 PySpark 中,如何使用 groupBy() 和 agg() 进行数据聚合操作?

    在 PySpark 中,可以使用groupBy()和agg()方法进行数据聚合操作。groupBy()方法用于按一个或多个列对数据进行分组,而agg()方法用于对分组后的数据进行聚合计算。...,并进行聚合计算result = df.groupBy("column_name1").agg( avg("column_name2").alias("average_value"), max...按某一列进行分组:使用 groupBy("column_name1") 方法按 column_name1 列对数据进行分组。进行聚合计算:使用 agg() 方法对分组后的数据进行聚合计算。...在这个示例中,我们计算了 column_name2 的平均值、column_name3 的最大值、column_name4 的最小值和 column_name5 的总和。...avg()、max()、min() 和 sum() 是 PySpark 提供的聚合函数。alias() 方法用于给聚合结果列指定别名。显示聚合结果:使用 result.show() 方法显示聚合结果。

    9510
    领券