首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

分布式计算框架:Spark、Dask、Ray

这个项目的主要目的是加快分布式大数据任务的执行,在那个时候,这些任务是由Hadoop MapReduce处理的。MapReduce在设计时考虑到了可扩展性和可靠性,但性能和易用性一直不是它的强项。...最初围绕并行NumPy的想法得到进一步发展,包括一个完整而轻量级的任务调度器,可以跟踪依赖关系,并支持大型多维数组和矩阵的并行化。...我们需要逐个看看这三个框架,分析它们的优劣势,同时考虑到各种常见的使用情况进行选择。 2.1 Spark 优点: 成熟稳定:Spark 的原始版本发布于2014年5月,是比较成熟的技术。...但是,需要谨慎对待,因为2021年1月,TPC强制Nvidia将该结果下架,因为它们违反了TPC的公平使用政策。...它是用Python编写的,这使得它易于安装和调试,但也会引入通常与Python搭配使用的标准性能考虑因素。

42331

使用Wordbatch对Python分布式AI后端进行基准测试

分布式批处理框架 Apache Spark及其Python接口PySpark是最古老的框架,最初的GitHub版本可追溯到2010年10月4日.Spark将自己定位为主要的大数据技术之一,在企业界得到广泛采用...Spark处理Map的定向非循环图(DAG)减少计算管道,在整个DAG处理过程中保持数据在工作人员之间的分布。任务图在功能上定义,并且在优化DAG计算顺序之后懒惰地执行任务。...它支持本地(串行,线程,多处理,Loky)和分布式后端(Spark,Dask,Ray)。类似地调用分布式框架,在可能的情况下将数据分布在整个管道中。...使用的操作系统是Ubuntu 18.04.2 LTS,库版本是pyspark 2.4.1,ray 0.7.0和分布式1.28.1。 结果 ?...Loky和Dask都有越来越多的时间使用,大致在同一时间使用串行收敛,但随着数据量的增加,可能会超过串行时间使用。这种奇怪行为的可能原因是流程之间缺乏共享以及此任务需要两次向每个工作人员发送字典。

1.6K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    来看看spark的五大优势吧

    对于企业而言,即使拥有极为杰出的数据科学家人才(当然这一前提同样很难实现),他们也几乎不可能通过MapReduce实现上述分析目标。除此之外,Spark还提供易于使用且速度惊人的预置库。...在此基础之上,数据科学家们将被解放出来,从而将主要精力集中在数据准备及质量控制之外的、更为关键的事务身上。有了Spark的协助,他们甚至能够确保对分析结果做出正确的解释。 2....虽然随着新版本的不断出炉,如今Hadoop在便捷性与功能水平方面已经得到了长足进步,但针对难度的诟病之声依然不绝于耳。...相较于强制要求用户了解一系列高复杂性知识背景,例如Java与MapReduce编程模式,Spark项目则在设计思路上保证了每一位了解数据库及一定程度脚本技能(使用Python或者Scala语言)的用户都能够轻松上手...Spark对于Hadoop供应商选择不设硬性要求 目前各大Hadoop发行版本都能够支持Spark,其理由也非常充分。Spark是一套中立性解决方案,即不会将用户绑定到任何一家供应商身上。

    66160

    The Hadoop Ecosystem Table--分布式系统

    QFS只需要1.5倍的原始容量,而不是像HDFS那样存储每个文件的三个完整版本,因此需要三倍的存储空间,因为它在九个不同的磁盘驱动器上分割数据。...但是,为了其他目的运行高性能计算集群的人通常不运行HDFS,这使他们有一堆计算能力,任务几乎可以从一点map减少受益,没有办法把这个权力运行Hadoop。...英特尔注意到了这一点,并且在发布的Hadoop发行版本2.5中增加了对Lustre的支持:用于ApacheHadoop *软件的英特尔®HPC发行版,这是一个新的产品,结合英特尔的Apache Hadoop...Alluxio是Hadoop兼容的。这意味着现有的Spark和MapReduce程序可以在Alluxio之上运行,而无需任何代码更改。...GridGain正在开发添加本地MapReduce组件,这将提供本机完整的Hadoop集成,而不需要更改API,比如Spark目前强制您这样做。

    80030

    基于Spark的机器学习实践 (二) - 初识MLlib

    MLlib仍将支持spark.mllib中基于RDD的API以及错误修复 MLlib不会为基于RDD的API添加新功能 在Spark 2.x版本中,MLlib将为基于DataFrames的API添加功能...netlib-java文档为您的平台提供其他安装说明。...请参考以下资源,了解如何配置这些BLAS实现使用的线程数:Intel MKL和OpenBLAS。 要在Python中使用MLlib,您将需要NumPy 1.4或更高版本。...行为的变化 SPARK-21027:OneVsRest中使用的默认并行度现在设置为1(即串行)。在2.2及更早版本中,并行度级别设置为Scala中的默认线程池大小。...,矩阵运算等 ◆ pipeline 等 3.2 MLlib与ml的区别 MLlib采用RDD形式的数据结构,而ml使用DataFrame的结构. ◆ Spark官方希望 用ml逐步替换MLlib ◆ 教程中两者兼顾

    3.5K40

    Hadoop与Spark以及那些坑

    1.选择         笔者一开始是在虚拟机上搭建的,创建了三个ubuntu虚拟机,然后开始布置分布式系统,但是,后来发现,资源完全不够用。...作为学习,我们用伪分布式完全就可以了。 2.安装Hadoop     这个部分其实不是那么难,但是前提是你得有linux基础。...我们怎么看这些东西有没有跑起来呢?jps这个查看守护进程的东西就可以看到。 有没有别的办法呢?有,通过web ui来看,直观很多。...同样的,我们去Spark官网上下载安装包,比如spark-1.4.0-bin-hadoop2.6.tgz,版本根据自己的hadoop版本选择,推荐使用2.6.0的hadoop,笔者试过,2.2.0的用2.3.0...装好pycharm后在安装目录的bin下打开pycharm.sh,然后开始一个新的项目,接下来在Run里面修改配置(Edit Configurations),我们加入spark的目录和spark下python

    58320

    基于Spark的机器学习实践 (二) - 初识MLlib

    MLlib仍将支持spark.mllib中基于RDD的API以及错误修复 MLlib不会为基于RDD的API添加新功能 在Spark 2.x版本中,MLlib将为基于DataFrames的API添加功能...netlib-java文档为您的平台提供其他安装说明。...请参考以下资源,了解如何配置这些BLAS实现使用的线程数:Intel MKL和OpenBLAS。 要在Python中使用MLlib,您将需要NumPy 1.4或更高版本。...行为的变化 SPARK-21027:OneVsRest中使用的默认并行度现在设置为1(即串行)。在2.2及更早版本中,并行度级别设置为Scala中的默认线程池大小。...,矩阵运算等 ◆ pipeline 等 3.2 MLlib与ml的区别 MLlib采用RDD形式的数据结构,而ml使用DataFrame的结构. ◆ Spark官方希望 用ml逐步替换MLlib ◆

    2.8K20

    【Python环境】Olivier Grisel谈scikit-learn和机器学习技术的未来

    我们正在努力使更多的scikit-learn算法能够以数据流模式,或核外模式,来管理数据,而不是在内存中控制整个数据集。我们希望它们逐渐地加载数据集,就像它们训练模型那样。...这也是MLlib一开始的设计方向(ed:Spark分布式机器学习框架)。他们选择仅实现可扩展性的算法,这些算法可以在它们有能力处理的那些数据上和大量集群中运行。...在解决集群的分布式计算之前(正如Spark关注的),我对于研究有效的核外处理方法(像Dato正在做的)也是很有兴趣的。...FD:以分布式方式存储大量数据会导致性能和结果的偏差么?我正在思考使用Spark运行随机森林的例子。 OG:MLlib随机森林算法在选择特征进行划分时,它是直接在每棵树的训练层面进行并行的。...其实在scikit-learn中也可以安装插件,使用数据框作为输入并且添加用户自定义的scikit-learn转换脚本。事实上,使这个过程变得更加简单也正是我们应该努力的实践方向。

    87590

    Olivier Grisel谈scikit-learn和机器学习技术的未来

    我们正在努力使更多的scikit-learn算法能够以数据流模式,或核外模式,来管理数据,而不是在内存中控制整个数据集。我们希望它们逐渐地加载数据集,就像它们训练模型那样。...这也是MLlib一开始的设计方向(ed:Spark分布式机器学习框架)。他们选择仅实现可扩展性的算法,这些算法可以在它们有能力处理的那些数据上和大量集群中运行。...在解决集群的分布式计算之前(正如Spark关注的),我对于研究有效的核外处理方法(像Dato正在做的)也是很有兴趣的。...FD:以分布式方式存储大量数据会导致性能和结果的偏差么?我正在思考使用Spark运行随机森林的例子。 OG:MLlib随机森林算法在选择特征进行划分时,它是直接在每棵树的训练层面进行并行的。...其实在scikit-learn中也可以安装插件,使用数据框作为输入并且添加用户自定义的scikit-learn转换脚本。事实上,使这个过程变得更加简单也正是我们应该努力的实践方向。

    69930

    Olivier Grisel谈scikit-learn和机器学习技术的未来

    我们正在努力使更多的scikit-learn算法能够以数据流模式,或核外模式,来管理数据,而不是在内存中控制整个数据集。我们希望它们逐渐地加载数据集,就像它们训练模型那样。...这也是MLlib一开始的设计方向(ed:Spark分布式机器学习框架)。他们选择仅实现可扩展性的算法,这些算法可以在它们有能力处理的那些数据上和大量集群中运行。...在解决集群的分布式计算之前(正如Spark关注的),我对于研究有效的核外处理方法(像Dato正在做的)也是很有兴趣的。...FD:以分布式方式存储大量数据会导致性能和结果的偏差么?我正在思考使用Spark运行随机森林的例子。 OG:MLlib随机森林算法在选择特征进行划分时,它是直接在每棵树的训练层面进行并行的。...其实在scikit-learn中也可以安装插件,使用数据框作为输入并且添加用户自定义的scikit-learn转换脚本。事实上,使这个过程变得更加简单也正是我们应该努力的实践方向。

    92360

    深入学习Apache Spark和TensorFlow

    这里有趣的是,即使TensorFlow本身不是分布式的,超参数调优过程也是“令人尴尬的并行”,可以使用Spark进行分发。...在这种情况下,我们可以使用Spark来广播数据和模型描述等通用元素,然后以容错的方式在一组机器上安排单个重复计算。 如何使用Spark提高准确性?默认超参数组的准确度是99.2%。...我如何使用它? 由于TensorFlow可以使用每个工作人员的所有内核,因此我们只能在每个工作人员上同时运行一个任务,并将他们一起批处理以限制争用。...按照TensorFlow网站上的说明, TensorFlow库可以作为常规Python库安装在Spark集群上。...下面的笔记本展示了如何安装TensorFlow并让用户重新运行这篇博文的实验: 使用TensorFlow分布式处理图像 使用TensorFlow测试图像的分布处理 按比例部署模型 TensorFlow模型可以直接嵌入管道中

    74780

    深入学习Apache Spark和TensorFlow

    这里有趣的是,即使TensorFlow本身不是分布式的,超参数调优过程也是“令人尴尬的并行”,可以使用Spark进行分发。...在这种情况下,我们可以使用Spark来广播数据和模型描述等通用元素,然后以容错的方式在一组机器上安排单个重复计算。 如何使用Spark提高准确性?默认超参数组的准确度是99.2%。...我如何使用它? 由于TensorFlow可以使用每个工作人员的所有内核,因此我们只能在每个工作人员上同时运行一个任务,并将他们一起批处理以限制争用。...下面的笔记本展示了如何安装TensorFlow并让用户重新运行这篇博文的实验: 使用TensorFlow分布式处理图像 使用TensorFlow测试图像的分布处理 按比例部署模型 TensorFlow模型可以直接嵌入管道中...作为一个例子,我们展示了如何从一个已经被训练的股票神经网络模型标记一组图像。 该模型首先使用Spark内置的广播机制分发给集群的工作人员: 用gfile 。

    1.1K70

    强者联盟——Python语言结合Spark框架

    Python不是Spark的“亲儿子”,在支持上要略差一些,但基本上常用的接口都支持。...在Hadoop发行版中,CDH5和HDP2都已经集成了Spark,只是集成的版本比官方的版本要略低一些。...WordCount例子的代码如下所示: 在上面的代码中,我个人喜欢用括号的闭合来进行分行,而不是在行尾加上续行符。 PySpark中大量使用了匿名函数lambda,因为通常都是非常简单的处理。...Spark并没有强制将其限定为Map和Reduce模型,而是提供了更加强大的变换能力,使得其代码简洁而优雅。 下面列出了一些常用的transform。...还有Tachyon,是基于内存的分布式文件系统,类似于Hadoop的HDFS文件系统,而Spark Streaming则类似于Storm实时计算。 强大的全栈式Spark,撑起了大数据的半壁江山。

    1.3K30

    Facebook 推荐算法

    我们面临的挑战是设计一个分布式算法,该算法将扩展到这些海量数据集以及如何克服由于我们数据的某些属性引起的问题(例如偏斜的项目程度分布,或隐式参与信号而不是评级)。...标准方法和问题 为了以分布式方式有效地解决上述公式,我们首先研究了与Giraph设计相似的系统如何做到(使用消息传递而不是map / reduce)。...这并没有完全在原始公式中实现SGD:每个顶点都使用它在迭代开始时收到的特征向量,而不是它们的最新版本。例如,假设项目A对用户B和C有评级。...SGD计算:在顺序解决方案中这是相同的,因为在任何时间点只有一个版本的特征向量,而不是将它们的副本发送给许多工作者并基于此进行更新。...与MLlib比较 Spark MLlib是一个非常流行的机器学习库,包含该领域领先的开源实现之一。 2014年7月,Databricks团队在Spark上发布了他们的ALS实施的性能数据。

    1.3K30

    Spark学习入门(让人看了想吐的话题)

    我到目前为止,在实际项目中没有使用过的api理解也不是很深刻,只是了解一些他们理论上的实现和差异。...这是没办法的事情,spark更新太快,写本书特别是技术书籍,一般都是以半年为单位,半年后书籍出版时,spark都不知道迭代了多少个小版本了,甚至都可能有大版本的跟新,所以大家选择书籍时,可以先通过各种渠道打听一下某本书是基于...但是也不是说老的版本不能看,如果有没有跨大的版本,还是有一定参考意义的。这里给大家普及一下spark的版本号的知识: ? spark书籍的第二个问题是,大家要清楚这本书是怎么分类的,怎么讲呢?...国内目前95%的公司对spark的使用都停留在应用层面,只要能使用开源spark写出高效的应用即可,对源码的阅读只可能是一个加分项,因为他们希望你通过源码阅读加深优化spark分布式应用的方法的理解和加快问题定位...spark源码的阅读确实很有必要,但绝对不是在刚刚开始学习的时候,这点大家切鸡切鸡!

    43920

    PySpark——开启大数据分析师之路

    分布式意味着它支持多节点并行计算和备份;而快速则是相对Hadoop中的MapReduce计算框架而言,官网号称速度差距是100倍;计算引擎则描述了Spark在大数据生态中定位:计算。...实际上,安装PySpark非常简单,仅需像安装其他第三方Python包一样执行相应pip命令即可,期间pip会自动检测并补全相应的工具依赖,如py4j,numpy和pandas等。...这里py4j实际上是python for java的意思,是Python和java之间互调的接口,所以除了pip命令安装PySpark之外还需配置系统的jdk环境,一般仍然是安装经典的JDK8版本,并检查是否将...相应的检验方法是在cmd窗口中键入java -version,当命令可以执行并显示正确的版本时,说明系统已完成java环境搭建。这是为PySpark运行提供了基础。 ?...进一步的,Spark中的其他组件依赖于RDD,例如: SQL组件中的核心数据结构是DataFrame,而DataFrame是对rdd的进一步封装。

    2.1K30

    快速入门深度学习,从 Deeplearning4j 开始

    同时也是在 Apache Spark 平台上为数不多的,可以原生态支持分布式模型训练的框架之一。...在 Deeplearning4j 的相关开源项目中,就有专门为张量运算而开发的 ND4J 和数据处理的 DataVec。它们的作用相当于 Python 中的 NumPy 和 Pandas。...与 Hadoop 和 Spark 集成,支持分布式 CPU 和 GPU Deeplearning4j 是原生支持在 Apache Spark 上构建分布式深度学习解决方案的框架。...而随着 Deeplearning4j 在工业界的使用逐渐增多,更多的研发人员希望有一套教程可以用来辅助开发和作为参考。...本课程我们主要围绕 0.8.0 和 1.0.0-alpha 展开(1.0.0-beta3 核心功能部分升级不大),这里罗列下从 0.7.0 版本到 1.0.0-alpha 版本主要新增的几个功能点: Spark

    1.3K10

    大数据吹了这么久为什么还落不了地?就因为这9点

    有时候一艘巨轮的侧方出现了破洞,但业界却决定坐等船体下沉、并把希望寄托在销售救生艇身上。 也有些时候,这些问题似乎并没到要闹出人命的地步——类似我家里浴室的状况,只有往一边拧龙头才会出水。...就目前来讲,GPU的使用成本优势并没能得到很好的体现,这是因为我们难以针对其进行编程,而且几乎没办法在不建立特定模型的前提下完成这项任务。...假设我们原本已经习惯了使用Spark实现各类计算任务,而且压根不觉得这么做有什么问题;但仿佛在一夜之间,其他人都开始构建所谓“GPGPU”集群,这自然会让我们有点措手不及之感。...我在分布式计算领域经常会见到这类情况。所谓“数据科学家”们编写出的Python代码相当垃圾,根本没办法有效进行问题分配,而且会造成大量不必要的内存浪费。...大数据痛点六号:分布式名不副实 我得承认,我对Hadoop的第一印象就是在Hive当中输入selectcount(*)fromsomesmalltable。我觉得这种使用方式真的非常差劲。

    72060

    Java 工程师转型 AI 的秘密法宝——深度学习框架 Deeplearning4j | 回顾

    深度学习是人工智能发展最为迅速的领域之一,Google、Facebook、Microsoft 等巨头都围绕深度学习重点投资了一系列新兴项目,他们也一直在支持一些开源深度学习框架。...目前研究人员使用的深度学习框架有 TensorFlow、Torch 、Caffe、Theano、Deeplearning4j 等,而 Deeplearning4j 是为数不多以 Java/JVM 为基础...,能与 Apache Spark 无缝结合,支持 CPU/GPU 集群分布式计算的开源框架。...Modle Zoo 在 0.9.0 版本之前是作为一个独立的工程存在的,0.9.0 之后的版本作为 DL4j 本身的一个模块,已经嵌入进去。...怎么和 Spark 结合做一个分布式的 Dp4j 模型的建模: ? 想要在 Spark 上面开发的同学,需要注意 Spark 的版本,因为 DL4j 支持 1.5、1.6 还有 2.0 之后的版本。

    1.2K40

    资深算法工程师万宫玺:Java 工程师转型 AI 的秘密法宝——深度学习框架 Deeplearning4j | 分享总结

    深度学习是人工智能发展最为迅速的领域之一,Google、Facebook、Microsoft 等巨头都围绕深度学习重点投资了一系列新兴项目,他们也一直在支持一些开源深度学习框架。...目前研究人员使用的深度学习框架有 TensorFlow、Torch 、Caffe、Theano、Deeplearning4j 等,而 Deeplearning4j 是为数不多以 Java/JVM 为基础...,能与 Apache Spark 无缝结合,支持 CPU/GPU 集群分布式计算的开源框架。...Modle Zoo 在 0.9.0 版本之前是作为一个独立的工程存在的,0.9.0 之后的版本作为 DL4j 本身的一个模块,已经嵌入进去。...怎么和 Spark 结合做一个分布式的 Dp4j 模型的建模: ? 想要在 Spark 上面开发的同学,需要注意 Spark 的版本,因为 DL4j 支持 1.5、1.6 还有 2.0 之后的版本。

    1K100
    领券