首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

服务器内存监测

而对于程序员而言,如何避免内存泄漏也是一门学问,倘若不加以控制,那么无论多大的内存都会有消耗殆尽的那天。...本文当然不是研究如何分析内存泄漏的产生原因与解决方案,而是在此之前的一步,通过简单的内存监测方式来预测内存泄漏的 潜在可能性 或者 偶发性 等。...我这边需要监测 系统内存 与 jvm堆内存 ,最终的结果会展示各个时间点的内存情况,所以需要一个时间类,表示每个切片的时间点。...timeMarkInterval是存储定时器id的,在销毁之前释放定时器;physicMemory和heapMemory获取图表div节点,用于echarts节点获取;systemInfo则会存储定时从服务器拉取到的数据...由图可见我这个系统堆内存通常消耗不到一百兆,后续可以将堆内存设定的再小一些,以提供给其它服务使用。总体内存是稳定状态,达到一定值会自动回收垃圾,占用率不会逐步提高,是个可控的系统。

12320

服务器内存监测

而对于程序员而言,如何避免内存泄漏也是一门学问,倘若不加以控制,那么无论多大的内存都会有消耗殆尽的那天。...本文当然不是研究如何分析内存泄漏的产生原因与解决方案,而是在此之前的一步,通过简单的内存监测方式来预测内存泄漏的 潜在可能性 或者 偶发性 等。...我这边需要监测 系统内存 与 jvm堆内存 ,最终的结果会展示各个时间点的内存情况,所以需要一个时间类,表示每个切片的时间点。...timeMarkInterval是存储定时器id的,在销毁之前释放定时器;physicMemory和heapMemory获取图表div节点,用于echarts节点获取;systemInfo则会存储定时从服务器拉取到的数据...由图可见我这个系统堆内存通常消耗不到一百兆,后续可以将堆内存设定的再小一些,以提供给其它服务使用。总体内存是稳定状态,达到一定值会自动回收垃圾,占用率不会逐步提高,是个可控的系统。

15440
您找到你想要的搜索结果了吗?
是的
没有找到

linux服务器内存

早上到单位 发现服务器 mysql 服务器停了 然后起来了 查询日志 显示 内存满了 把mysql服务给杀了 linux 服务器如果 内存满了 会自动清理进程 防止服务器挂掉 选择的话 谁占的的内存大...就先杀谁 我的服务器里面 mysql服务占的内存是最大的 所以就把mysql就给杀了 image.png 然后 重启mysql 查询内存 image.png 在这说一下 怎么看linux的内存 举个例子...空闲的内存数: 232M shared 当前已经废弃不用,总是0 buffers Buffer 缓存内存数: 62M cached Page 缓存内存数:421M 关系:total(1002M) = used...记住内存是拿来用的,不是拿来看的.不象windows, 无论你的真实物理内存有多少,他都要拿硬盘交换文件来读.这也就是windows为什么常常提示虚拟空间不足的原因.你们想想,多无聊,在内存还有大部分的时候...,拿出一部分硬盘空间来充当内存.硬盘怎么会快过内存.所以我们看linux,只要不用swap的交换空间,就不用担心自己的内存太少.如果常常 swap用很多,可能你就要考虑加物理内存了.这也是linux看内存是否够用的标准哦

31.8K10

linux服务器内存——分析篇

早上到单位 发现服务器 mysql 服务器停了 然后起来了 查询日志 显示 内存满了 把mysql服务给杀了 linux 服务器如果 内存满了 会自动清理进程 防止服务器挂掉 选择的话 谁占的的内存大...就先杀谁 我的服务器里面 mysql服务占的内存是最大的 所以就把mysql就给杀了 image.png 然后 重启mysql 查询内存 image.png 在这说一下 怎么看linux的内存 举个例子...空闲的内存数: 232M shared 当前已经废弃不用,总是0 buffers Buffer 缓存内存数: 62M cached Page 缓存内存数:421M 关系:total(1002M) = used...记住内存是拿来用的,不是拿来看的.不象windows, 无论你的真实物理内存有多少,他都要拿硬盘交换文件来读.这也就是windows为什么常常提示虚拟空间不足的原因.你们想想,多无聊,在内存还有大部分的时候...,拿出一部分硬盘空间来充当内存.硬盘怎么会快过内存.所以我们看linux,只要不用swap的交换空间,就不用担心自己的内存太少.如果常常 swap用很多,可能你就要考虑加物理内存了.这也是linux看内存是否够用的标准哦

23.9K10

看懂服务器 CPU 内存支持,学会计算内存带宽

在深入了解服务器 CPU 的型号、代际、片内与片间互联架构一文中我们了解了服务器 CPU 的内部架构。在其中我们看到有一个内存控制器。 关于CPU内存控制器中会有很多专技术细节。...而且不再像之前一样要求每个内存颗粒传输距离相等,工艺复杂度因寄存缓存器的引入而下降,使得容量也可以提高到 32 GB。主要用在服务器上。 下图是一个服务器RDIMM 32 GB 内存条。...这个服务器内存条不光正面有很多内存颗粒,连背面也有。可见服务器内存的颗粒数量比普通笔记本电脑、个人台式机的颗粒都要多很多。...另外一台服务器经常是连续要运行几个月甚至是几年。因此总的来说,服务器对稳定性的要求极高,不允许比特翻转错误发生。 ECC 是一种内存专用的技术。...服务器 CPU 支持 RDIMM(带寄存器双列直插模块)和 LRDIMM(低负载双列直插内存模块)内存。这两种内存单条都有更大的容量。

26810

创建百万实例如何节省内存

,每当有一个用户上线的时候,就在服务器内创建一个 User 实例。...这样当在线人数多的时候,很容易就会产生百万千万级别的实例,内存的开销十分巨大,如何降低这些大量实例的内存空间成了我们亟待解决的问题。...这篇文章,我就介绍一种解决办法:定义类的 __slot__ 属性,用它来声明实例属性的列表,可以用来减少内存空间的目的。...这样一个动态绑定属性的特性,其实是以牺牲内存为代价的,因为这个 __dict__ 它本身是占用内存的,接下来我们来验证这件事情: import sys sys.getsizeof(u1....__dict__) 我们用 sys 模块下的 getsizeof 方法,它可以得到一个对象使用的内存: 112 我们可以看到这个字典占用了 112 的字节。

56210

【Linux 内核 内存管理】物理内存组织结构 ② ( 内存模型 | 平坦内存 | 稀疏内存 | 非连续内存 | 内存管理系统三结构 | 节点 Node | 区域 Zone | 页 Page )

文章目录 一、内存模型 二、内存管理系统三结构 一、内存模型 ---- 从 CPU 处理器 的角度出发 , 观察 内存的 " 物理分布 " , 有如下 3 种内存模型 , Linux 内核针对这...3 种内存模型进行不同的处理 ; ① 平坦内存 : Flat Memory , 物理地址空间 是 连续的 , 没有 " 内存空洞 " ; ② 稀疏内存 : Space Memory , 物理地址空间...是 非连续 的 , 有 " 内存空洞 " , 该内存模型 支持 内存条的 " 热插拔 " 操作 ; ③ 非连续内存 : Discontiguous Memory , 物理地址空间 是 非连续 的 , 有..." 内存空洞 " ; 内存热插拔支持 : 只有 " 稀疏内存模型 " 支持 内存条 的 热插拔 操作 ; 内存空洞 : 系统的 2 个物理内存 之间 , 存在 内存空洞 ; 1 个物理内存 内部也可能存在...内存空洞 ; 二、内存管理系统三结构 ---- 内存管理系统 3 结构 : ① 节点 Node , ② 区域 Zone , ③ 页 Page , Linux 内核中 , 使用 上述 3 结构

2.7K30

服务器内存使用飙升的排查

这几天自己线上的乞丐服务器遇到一个问题,io会瞬间飙升到很高很高,造成内存使用飙升。但是实际上并发量并不大(网络连接数)。知道是哪个进程造成的,但是确实排查代码中没有是么地方会有这么大的读写。...也不知道对方到底发的什么数据导致这么大的内存占用。 之前也处理过类似的问题。麻烦之处在于很好的定位问题,重现实际的操作。没办法,只能针对socket服务特定的端口进行抓包。...服务器问题,无非就是资源不合理的使用,造成服务器内存,cpu,io,流量等相关资源出现非常不正常的波动,资源使用率飙升。对于服务器性能问题的排查,没有其他比较好的办法,只能是通过重现复盘去改进。...特别是如果服务器上跑的东西比较多,一个个的排查相当痛苦。 出现问题,首先看日志。如果是线上的,先想办法恢复服务再排查。 看看登录日志,访问日志是否有异常,确定是否有人扫机器。

22.2K20

13.缓存、三缓存、内存溢出、AsyncTask

mAdapter = new PhotoAdapter(); lvPhoto.setAdapter(mAdapter); gvPhoto.setAdapter(mAdapter); } } 三缓存...- 内存缓存, 优先加载, 速度最快 - 本地缓存, 次优先加载, 速度快 - 网络缓存, 不优先加载, 速度慢,浪费流量 服务器端下载的图片是使用 Http的缓存机制,每次执行将本地图片的时间发送给服务器...在从服务器获取到图片后,需要再在本地和内存中分别存一份,这样下次直接就可以从内存中直接获取了,这样就加快了显示的速度,提高了用户的体验。...内存溢出OOM 导致内存泄漏主要的原因是,先前申请了内存空间而忘记了释放。如果程序中存在对无用对象的引用,那么这些对象就会驻留内存,消耗内存,因为无法让垃圾回收器GC验证这些对象是否不再需要。...内存泄露 memory leak,是指程序在申请内存后,无法释放已申请的内存空间,一次内存泄露危害可以忽略,但内存泄露堆积后果很严重,无论多少内存,迟早会被占光。

1.2K120

驱动开发:内核解析内存页表

当今操作系统普遍采用64位架构,CPU最大寻址能力虽然达到了64位,但其实仅仅只是用到了48位进行寻址,其内存管理采用了9-9-9-9-12的分页模式,9-9-9-9-12分页表示物理地址拥有四页表,...微软将这四依次命名为PXE、PPE、PDE、PTE这四项。...关于内存管理和分页模式,不同的操作系统和体系结构可能会有略微不同的实现方式。...9-9-9-9-12的分页模式是一种常见的分页方案,其中物理地址被分成四页表:PXE(Page Directory Pointer Table Entry)、PPE(Page Directory Entry...这种分页模式可以支持大量的物理内存地址映射到虚拟内存地址空间中。每个级别的页表都负责将虚拟地址映射到更具体的物理地址。通过这种层次化的页表结构,操作系统可以更有效地管理和分配内存

51590
领券