首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

学界 | 离开实验室的材料科学:AI正将新材料的发现过程提速200倍

大数据文摘作品 编译:李雷、大茜、Aileen 算法和材料数据库正帮科学家预测哪些元素能合成新材料。 几百年来,人们一直是通过反复试验或者靠运气和偶然发现新材料。现在,科学家们正在使用人工智能来加速这一过程。 最近,西北大学的研究人员用AI来解决如何生成新的金属玻璃混合物的问题。这比起在实验室进行实验快了200倍。 科学家们正在构建由数千种化合物组成的数据库,以便用算法来预测哪些化合物的组合会形成有趣的新材料。还有人用AI来分析已发表的论文挖据“材料配方”以产生新材料。 过去,科学家和建筑工人们只能将材料混

04
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【Nature 封面论文】机器学习掀起材料革命,人工智能或将颠覆人类科研方式

    【新智元导读】昨日Nature封面论文:哈佛大学研究者借助机器学习算法,利用“废弃”数据成功预测新材料的合成,引发学界激论:人工智能真能加速发现神奇新材料吗?该研究所用的“计算材料学”结合计算机模型和机器学习,是对传统研究方法的革新。计算机科学和人工智能的影响已经拓展到越来越多的领域,机器学习或将改变未来科研方式。 发现一种新的材料是非常艰难的过程,通常要经历无数次失败,偶尔在机缘巧合之下取得成果,还要费劲功夫反向检测这种新材料的性质。但有一批材料科学家转换思路,使用计算机模型和机器学习算法生成海量假想的材

    06

    J.Am.Chem.Soc. | 基于半监督学习的晶体结构的合成预测

    今天给大家介绍韩国高级科学技术研究所Jidon Jang等人在Journal of the American Chemical Society上发表的文章“Structure-Based Synthesizability Prediction of Crystals Using Partially Supervised Learning”。通过预测无机材料的合成能力可以加速新材料的发现,传统方法依靠计算热力学稳定性来预测定材料合成性,但考虑因素过于简单,本文中提出了一种基于材料数据库半监督学习的机器学习方法来量化合成概率。通过对positive and unlabeled machine learning (PU learning)的优化,实现图卷积神经网络作为分类器模型输出合成分数(CLscore)。CLscore排名前100的虚拟材料中有71种材料在文献中被证实可合成。

    02

    机器学习的跨学科应用——发布篇

    在同行评审期刊上发表论文的基本原则是,对方法进行充分描述以确保可重现性。因此,对于基于机器学习的研究,必须提供模型和架构的完整源代码,包括数据处理,数据清洗,模型训练和模型评估的实现细节。如果可以的话,还应该在许可的或开源许可下发布源代码,以便其他人可以重复使用,改进,协作并进一步为您的工作作出贡献。 您发布的源代码必须是完整的——也就是说,其他人应该能够逐行阅读您的源代码,执行该源代码,并获得与您相同或相似的结果。您必须列举出所需的库和其他软件的依赖项,最好列出相关的版本号。理想情况下,这些依赖项将列在“环境文件”中,其他人可以使用这些文件在其他本地系统上直接创建可运行的软件环境。如果您有使用其他人开发的任何代码或者软件包,请确保遵守其许可证。您还可以考虑将代码托管在线,如版本控制的存储库中,比如著名的GitHub, GitLab, Bitbucket, DLHub 或其他类似的在线版本。 请确保源代码文件齐全,并遵循完善的代码标准。与其编写额外的注释来解释您的代码,不如考虑以某种不需要附加注释的方式来编写代码。(当然在代码中注释是相当重要的)这需要使用明确的变量名,严格遵循格式标准(例如PEP8)并编写“显式”代码。最好添加一个“README”文件,为您的读者提供有关安装、设置、使用代码以及拷贝已发布版本的说明。为了明确在任何基础系统架构上的大规模可部署性和一致性,还可以考虑使用Docker等工具将项目作为容器化的应用程序发布。

    01

    MatSci-NLP: 释放自然语言处理在材料科学中的力量

    今天我们介绍由蒙特利尔大学MILA - Quebec人工智能机构的Yu Song发表在arXiv上的工作,该工作提出了MatSci-NLP,用于评估自然语言处理(NLP)模型在材料科学文本上的性能的自然语言基准。该工作从公开可用的材料科学文本数据构建基准,以涵盖七个不同的NLP任务,包括传统的NLP任务(如命名实体识别和关系分类)以及特定于材料科学的NLP任务(如合成动作检索以及涉及创建材料的合成程序)。研究了在不同科学文本语料库上预训练的基于BERT的模型,以了解预训练策略对理解材料科学文本的影响。在低资源训练设置下的实验表明,在科学文本上预训练的语言模型优于在一般文本上训练的BERT。此外,该工作提出了一种统一的文本到模式的MatSci-NLP多任务学习方法,并将其性能与专门针对材料科学期刊进行预训练的模型MatBERT进行了比较。在对不同训练方法的分析中,发现提出的受问答启发的文本到图式方法始终优于单任务和多任务NLP微调方法。

    02

    J. Phys. Chem. C | 基于自然语言处理的材料化学文本数据库

    今天为大家介绍的是来自Kamal Choudhary团队的一篇论文。在这项工作中,作者介绍了ChemNLP库,它可用于以下方面:(1)整理材料和化学文献的开放访问数据集,开发和比较传统机器学习、transformer和图神经网络模型,用于(2)对文本进行分类和聚类,(3)进行大规模文本挖掘的命名实体识别,(4)生成摘要以从摘要中生成文章标题,(5)通过标题生成文本以建议摘要,(6)与密度泛函理论数据集集成,以识别潜在的候选材料,如超导体,以及(7)开发用于文本和参考查询的网络界面。作者主要使用公开可用的arXiv和PubChem数据集,但这些工具也可以用于其他数据集。此外,随着新模型的开发,它们可以轻松集成到该库中。

    03

    PDMS PipelineTool 0.9.3版发布

    0.9.3版本主要是重构了螺栓材料统计功能,以sample项目的测试结果为例,螺栓统计的规格和数量与PDMS出的ISO图上标注的螺栓数据一致,有两根不一致的Branch我单独做了说明,我认为按照我的方法计算也是合理的。我本以为螺栓这么一点小东西应该很容易吧,没想到计算起来真是复杂,而且元件属性的订制必须也要符合一致的命名和设置规范,没有统一规范,工具就没有没有办法基于一个标准的计算规则来统计材料,为此我增加了很多元件属性的检查。开发过程经历了三次推倒重来,也算经历了一番波折,最后总算是八九不离十了。因为sample项目的数据量小,材料类别少,所以还有一些判断规则后期需要扩充,以后再说。

    01

    解决方案|如何高效实现文档管理?云分享一招追踪浏览数据!

    日常生活和工作中,经常会涉及到对文档、视频的存储与审阅分享。面对海量的文档、宣传视频及知识素材,很难进行分类管理,发送到微信群、朋友圈后未能得到及时的反馈,也无法追踪浏览数据。 在面对海量的视频、文档,且需要分享到多个场景时,如何高效地进行管理并追踪到分享数据呢?  1、产品介绍|云分享使用场景 文档分享管理:避免低效的文档反复下载上传,云端实时管理多版本文件; 转发权限设置:用户可自定义分享对象、文档有效期、以及对下载/转存等功能进行限制,分享权限安全可控; 反馈意见收集:项目协作者浏览文档后,可以快速标

    03
    领券