目录 1 实现 1 实现 /** * get hash code on 2^32 ring (md5散列的方式计算hash值) * 根据字符串计算hash 值 * @param
卡方检验常用于以下情况: 检验两个分类变量之间是否存在关联性,例如性别和吸烟习惯之间的关联性。 检验一个分类变量在不同组之间的分布差异,例如不同年龄组中的偏好。...检验观察到的数据与期望的理论分布之间的差异,例如检验一个骰子是否均匀。 在卡方检验中,如果计算得到的卡方值显著大于临界值,就可以拒绝原假设,即认为变量之间存在关联或差异。...显著性水平 定义根据假设推到出的结论是否“靠谱”,根据假设和样本,我们可以计算出在某个自由度下卡方统计量的值,这个值如果是落在“小概率”事件区间内则拒绝假设,那么如何定义小概率事件,多小的概率算得上小概率...步骤 计算卡方检定的统计值 \chi ^{2} :把每一个观察值和理论值的差做平方后、除以理论值、再加总。 计算 \chi ^{2} 统计值的自由度 df。...总观察数应不小于40,且每个格子的频数应大于等于5; 依据样本数据计算出的理论频数应不小于5。 分类变量的比较检验 定义: 主要使用样本数据检验总体分布形态或比例的假说。
独立性检验一般采用列联表的形式记录观察数据, 列联表是由两个以上的变量进行交叉分类的频数分布表,是用于提供基本调查结果的最常用形式,可以清楚地表示定类变量之间是否相互关联。...独立性检验的理论频数的计算公式为: [图片] 公式中,fxi表示横行各组实际频数的总和;fyi表示纵列各组实际频数的总和;N表示样本容量的总和; 例题:为了解男女在公共场所禁烟上的态度,随机调查100...首先,两种检验抽取样本的方法不同。如果抽样是在各类别中分别进行,依照各类别分别计算其比例,属于拟合优度检验。...如果抽样时并未事先分类,抽样后根据研究内容,把入选单位按两类变量进行分类,形成列联表,则是独立性检验。 其次,两种检验假设的内容有所差异。...拟合优度检验的原假设通常是假设各类别总体比例等于某个期望概率,而独立性检验中原假设则假设两个变量之间独立。 最后,期望频数的计算不同。
数据转换仅仅是对数据中每个观察值的独立处理,而标准化则涉及到数值之间的处理。...在基于欧氏距离的PCA、RDA中分析群落数据可以将每个样方弦转化可以弥补欧氏距离的缺陷。弦转化后的数据使用欧氏距离函数计算将得到弦距离矩阵。...⑧Wisconsin转化,这个是使用伴随的函数wisconsin(),将数据除以该列最大值再除以该行总和,是最大值标准化和总和标准化的结合。...对于物理、化学变量而言,则完全不同,因为环境变量的值具有绝对性,例如温度1-2℃和21-22℃其差异是一样的。...环境变量由于量纲不同,在计算距离矩阵(欧氏距离)、根据特征根提取的主成分分析、比较系数的回归分析之前,均需要进行z-score标准化。 —END—
函数difftime()可以用来计算时间间隔,还可以自定义显示单位(周、天、时、分、秒),如下所示: 函数Sys.Date()可以返回当前日期,如下所示: ⑶数据标准化 在数据分析之前,我们往往要根据分析方法的需要对数据进行各种预处理...数据转换仅仅是对数据中每个观察值的独立处理,而标准化则涉及到数值之间的处理。...⑧Wisconsin转化,这个是使用伴随的函数wisconsin(),将数据除以该列最大值再除以该行总和,是最大值标准化和总和标准化的结合。...对于物理、化学变量而言,则完全不同,因为环境变量的值具有绝对性,例如温度1-2℃和21-22℃其差异是一样的。...环境变量由于量纲不同,在计算距离矩阵(欧氏距离)、根据特征根提取的主成分分析、比较系数的回归分析之前,均需要进行z-score标准化。
当我们的数据集太大(> 10,000点)并且我们想要节省计算时间时,相对于k-medoids聚类,我们更倾向于k-means聚类。 数据集是否很大完全取决于可用的计算能力。... km.res 变量中: 将所有数据点的成对距离矩阵存储在 pair_dis 变量中: 计算数据集中每个点的轮廓分数: 绘制轮廓分数图: 输出如下: 图:每个群集中每个点的轮廓分数用单个条形表示...确定最佳群集数 针对k的各个值计算轮廓分数来确定最佳的簇数: 从前面的图中,选择得分最高的k值;即2。根据轮廓分数,聚类的最佳数量为2。...差距统计 差距统计数据是在数据集中找到最佳聚类数的最有效方法之一。它适用于任何类型的聚类方法。通过比较我们观察到的数据集与没有明显聚类的参考数据集生成的聚类的WSS值,计算出Gap统计量。...因此,简而言之,Gap统计量用于测量观察到的数据集和随机数据集的WSS值,并找到观察到的数据集与随机数据集的偏差。为了找到理想的聚类数,我们选择k的值,该值使我们获得Gap统计量的最大值。
,行业是要检验的因素或因子 水平或处理( treatment:因素的不同表现,即每个自变量的不同取值称为因素的水平 观察值:在每个因素水平下得到的样本值,每个行业被投诉的次数就是观察值 试验:这里只涉及一个因素...如果这种差异主要是系统误差,说明不同行业对投诉次数有显著影响 方差分析计算方法 方差分析的前提: 每个总体都应服从正态分布 对于因素的每一个水平,其观察值是来自服从正态分布总体的简单随机样本 比如,每个行业被投诉的次数必需服从正态分布...全部观察值的总均值 误差平方和 均方(MS) 水平的均值: 定从第i个总体中抽取一个容量为ni的简单随机样本,第ⅰ个总体的样本均值为该样本的全部观察值总和除以观察值的个数 式中:ni为第i个总体的样本观察值个数...xij为第i个总体的第j个观察值 全部观察值的总均值: 全部观察值的总和除以观察值的总个数 式中:n=n1+n2+......实例: 在评价某药物耐受性及安全性的期临床试验中,对符合纳入标准的30名健康自愿者随机分为3组每组10名,各组注射剂量分别为0.5U、1U、2U,观察48小时部分凝血活酶时间(s)试问不同剂量的部分凝血活酶时间有无不同
这是一种基于过滤器的方法。 在数据集中目标变量和数值特征之间Pearson相关的绝对值。根据此标准保留前n个特征。...卡方(chi-squared) 这是另一种基于过滤器的方法。 在这种方法中,计算目标和数值变量之间的卡方度量,只选择具有最大卡方值的变量。 ?...观测值和预期计数 计算卡方值: 要做到这一点,如果两个分类变量之间确实存在独立性,首先要找出期望落入每个桶(bucket)中的值。 这很简单,将每个单元格的行总和和列总和相乘,并将其除以总观察值。...所以好/不好右前锋的Bucket预期值= 25(行总和)* 60(列总和)/ 100(总观察值) 由于数据中有25%是不好的右前锋,表中观察值为60个优秀选手,因此有15名球员。...基于树:SelectFromModel 我们还可以使用随机森林,根据特征的重要性选择特征。 我们使用每个决策树中的节点杂质计算特征的重要性。
数据帧由100行和5列组成。它包含datetime、categorical和numerical值。 1.折线图 折线图显示了两个变量之间的关系。其中之一通常是时间。...它通常用于显示两个数值变量的值。我们可以观察它们之间是否有关联。 我们可以创建“val”和“val2”列的散点图,如下所示。...我们已经使用颜色编码来根据“cat”列分离数据点。mark_circle函数的size参数用于调整散点图中点的大小。 3.直方图 直方图用于显示连续变量的分布。...A中的值范围小于其他两个类别。框内的白线表示中值。 5.条形图 条形图可用于可视化离散变量。每个类别都用一个大小与该类别的值成比例的条表示。...第一行从date列中提取周。第二行将“val3”列按周分组并计算总和。 我们现在可以创建条形图。
它是由落在单元格 i,j 中的点的总和除以所有点的总和得出的。即: ? 同样,不管 Y 的取值,X 的概率为落在单元格一列的点的总和除以所有点的总和,如下所示: ?...因为在 i 列中,实例的总数就是该列中每个单元格表示的实例的总和。有 ci = ∑jnij,所以有: ? 这个就是概率的加法法则。...最后根据贝叶斯定理的公式计算: ? 下面就可以对贝叶斯做一个简单的解释。将概率 p(B) 称之为先验概率(prior probability),因为其是我们在观察水果特性之前就已经获得的概率。...现在我们转向更普遍的贝叶斯视角,它能够量化不确定性。 将频率概率应用于随机变量来观察其随机值似乎是合理的。但是,我们希望解决和量化围绕着选择模型参数 w 的不确定性。...取对数不仅简化了后续的数学分析,而且在数值计算上也有帮助,因为大量的小概率的乘积很容易使计算机的数值精度下降,而这可以通过计算对数概率的总和来解决的。对数似然方程可以表示为如下形式: ?
所以处理分类变量的检验是基于变量计数,而不是变量本身的实际值。...使用以下公式计算检验统计量的值: 样本观察值理论值理论值 observed = minnesota_table national_ratios = national_table/len(national...(statistic=array([18.19480519]), pvalue=array([0.00113047])) 独立性检验 独立性检验是统计学的另一种检验方式,它是根据次数判断两类变量彼此相关或相互独立的假设检验...主要区别在于,独立性检验必须在二维表格中计算每个单元格的预期计数,而不是一维表格。要获得单元格的预期计数,需要将该单元格的行总计乘以该单元格的列总计,然后除以观察的总数。...7.169321280162059 注意:调用此处使用sum()方法两次:第一次是获取列和,第二次是将列和相加,返回整个二维表的总和。
优点:可以判断时间序列数据是否具有平稳性,为后续时间序列分析提供基础。缺点:不同的平稳性检验方法可能会得出不同的结果,需要综合考虑多个检验方法。...优点:可以检验时间序列数据是否具有随机性和独立性,对于时间序列分析的合理性很重要。缺点:不同的白噪声检验方法可能会得出不同的结果,需要综合考虑多个检验方法。...期望频数的计算公式如下: 卡方检验中的期望频数是根据原假设(变量A和变量B是独立的)(这很重要!!)来计算的。预期频数的计算采用了边际总频数和行、列边际频数的乘积。...在卡方检验中,自由度的计算公式如下(以在卡方分布表中查找对应的临界值或计算 p 值): 自由度的公式是根据卡方检验中的二维列联表的维度来确定的。在二维列联表中,行和列的数量分别为 r 和 c。...df = (r-1)(c-1) 其中, r 表示行数, c 表示列数。 步骤 4:计算 p 值(p-value) 我们根据卡方统计量和自由度计算 p 值。
、每季度、每年)并应用不同的聚合函数(总和、平均值、最大值)。...,计算每周'C_0'列的和。...假设您有上面生成的每日数据,并希望将其转换为12小时的频率,并在每个间隔内计算“C_0”的总和: df.resample('12H')['C_0'].sum().head(10) 代码将数据重采样为12...小时的间隔,并在每个间隔内对' C_0 '应用总和聚合。...并为不同的列指定不同的聚合函数。对于“C_0”,计算总和和平均值,而对于“C_1”,计算标准差。
你可能已经注意到,每个表格中的值的总和都必须为 1。 接下来看看 SAT 的 CPD。其每一行都对应于其父节点(Intelligence)可以取的值,每一列对应于 SAT 可以取的值。...“ 我们是根据这些节点在图中的连接方式得到这个条件独立信息的。如果这些节点的连接方式不同,那么我们也会得到不同的条件独立信息。 让我们看看另一个例子。 假设你知道这个学生的智力水平高。...变量消除的时间复杂度取决于图结构以及你消除这些变量的顺序。在最糟糕的情况下,时间复杂度会指数式增长。 4....让我们将有噪声图像中的每个像素都定义为一个观察到的随机变量,并将基准图像中的每个像素都定义为一个未被观察到的变量。由此,如果该图像的大小为 MxN,那么观察到的变量和未被观察到的变量都各有 MN 个。...让我们将观察到的变量表示为 X_ij,未被观察到的变量定义为 Y_ij。每个变量都可取值 +1 或 -1(分别对应于黑色像素和白色像素)。给定观察到的变量,我们希望找到未观察到的变量的最有可能的值。
这是一种简单的方法,首先将每个元素除以相应行的总和,然后除以相应列的总和。...Median Contact Frequency Scaling (MCFS):此方法可用于使用两个位置/坐标之间的特定距离的中值接触值来归一化接触图。首先,计算每个距离的中值距离接触频率。...随后,观察到的接触频率除以根据两个位置之间的距离获得的中值接触频率。 方法详解 早期的 Hi-C 数据归一化方法主要关注引起噪声的显性因素。...VC是通过将矩阵的每个元素除以其行和和列和来完成的,以去除每个位点的不同测序覆盖度。 VC可以被认为是SK方法的单次迭代。在SK中,重复执行VC过程,直到所有行和列的总和为相同的值。...,我们首先将偏差设置为矩阵每行的总和,并将每个矩阵元素除以其行和列的偏差。
date 列包含 100 个连续日期,class 列包含 4 个以对象数据类型存储的不同值,amount 列包含 10 到 100 之间的随机整数。 1....以下是我们通常的使用方式: df["cumulative_sum"] = df["amount"].cumsum()df.head() 这样就获得了金额列的列值累积总和。...但是它只是全部的总和没有考虑分类。在某些情况下,我们可能需要分别计算不同类别的累积和。 Pandas中我们只需要按类列对行进行分组,然后应用 cumsum 函数。...df[df["class"]=="A"].head() 类的累积总和列包含为每个类单独计算的累积值总和。 3. Category数据类型 我们经常需要处理具有有限且固定数量的值的分类数据。...例如在我们的 DataFrame 中,”分类“列具有 4 个不同值的分类变量:A、B、C、D。 默认情况下,该列的数据类型为object。
date 列包含 100 个连续日期,class 列包含 4 个以对象数据类型存储的不同值,amount 列包含 10 到 100 之间的随机整数。...它计算列中值的累积和。以下是我们通常的使用方式: df["cumulative_sum"] = df["amount"].cumsum() df.head() 这样就获得了金额列值的累积总和。...但是它只是全部的总和没有考虑分类。在某些情况下,我们可能需要分别计算不同类别的累积和。 Pandas中我们只需要按类列对行进行分组,然后应用 cumsum 函数。...df[df["class"]=="A"].head() 类·的累积总和列包含为每个类单独计算的累积值总和。 3、Category数据类型 我们经常需要处理具有有限且固定数量的值的分类数据。...例如在我们的 DataFrame 中,”分类“列具有 4 个不同值的分类变量:A、B、C、D。 默认情况下,该列的数据类型为object。
你可能已经注意到,每个表格中的值的总和都必须为 1。 接下来看看 SAT 的 CPD。其每一行都对应于其父节点(Intelligence)可以取的值,每一列对应于 SAT 可以取的值。...一般来说,当有很多变量时,你不仅可以使用分子的值来计算分母,而且分子本身也可能会包含重复的计算。你可以使用动态编程来高效地使用之前已计算出的值。...变量消除的时间复杂度取决于图结构以及你消除这些变量的顺序。在最糟糕的情况下,时间复杂度会指数式增长。...让我们将有噪声图像中的每个像素都定义为一个观察到的随机变量,并将基准图像中的每个像素都定义为一个未被观察到的变量。由此,如果该图像的大小为 MxN,那么观察到的变量和未被观察到的变量都各有 MN 个。...让我们将观察到的变量表示为 X_ij,未被观察到的变量定义为 Y_ij。每个变量都可取值 +1 或 -1(分别对应于黑色像素和白色像素)。给定观察到的变量,我们希望找到未观察到的变量的最有可能的值。
领取专属 10元无门槛券
手把手带您无忧上云