最近公司在做关联图谱的项目,想挖掘团伙犯罪。在准备关系数据时需要根据两列组合删除数据框中的重复值,两列中元素的顺序可能是相反的。...本文介绍一句语句解决多列组合删除数据框中重复值的问题。 一、举一个小例子 在Python中有一个包含3列的数据框,希望根据列name1和name2组合(在两行中顺序不一样)消除重复项。...由于原始数据是从hive sql中跑出来,表示商户号之间关系的数据,merchant_r和merchant_l中存在组合重复的现象。现希望根据这两列组合消除重复项。...打印原始数据行数: print(df.shape) 得到结果: (130, 3) 由于每两行中有一行是重复的,希望数据处理后得到一个65行3列的去重数据框。...从上图可以看出用set替换frozense会报不可哈希的错误。 三、把代码推广到多列 解决多列组合删除数据框中重复值的问题,只要把代码中取两列的代码变成多列即可。
在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...每种方法都有其优点和缺点,因此应根据具体情况使用不同的方法。 点符号 可以键入“df.国家”以获得“国家”列,这是一种快速而简单的获取列的方法。但是,如果列名包含空格,那么这种方法行不通。...因为我们用引号将字符串(列名)括起来,所以这里也允许使用带空格的名称。 图5 获取多列 方括号表示法使获得多列变得容易。语法类似,但我们将字符串列表传递到方括号中。...记住这种表示法的一个更简单的方法是:df[列名]提供一列,然后添加另一个[行索引]将提供该列中的特定项。 假设我们想获取第2行Mary Jane所在的城市。
pandas.core.frame.DataFrame; 生成一个随机数数组; 将这个随机数数组与 DataFrame 中的数据列合并成一个新的 NumPy 数组。...在这个 DataFrame 中,“label” 作为列名,列表中的元素作为数据填充到这一列中。...random_array = np.random.rand(4, 2) 此行代码使用 numpy 库生成一个形状为 4x2(即 4 行 2 列)的随机数数组。...print(random_array) print(values_array) 上面两行代码分别打印出前面生成的随机数数组和从 DataFrame 提取出来的值组成的数组。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。
大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...目录 1.loc方法 (1)读取第二行的值 (2)读取第二列的值 (3)同时读取某行某列 (4)读取DataFrame的某个区域 (5)根据条件读取 (6)也可以进行切片操作 2.iloc方法 (1)...读取第二行的值 (2)读取第二行的值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列的名称或标签来索引 iloc:通过行、列的索引位置来寻找数据 首先,我们先创建一个...3, "B":"D"] 结果: (5)根据条件读取 # 读取第B列中大于6的值 data5 = data.loc[ data.B > 6] #等价于 data5 = data[data.B...和columns进行切片操作 # 读取第2、3行,第3、4列 data1 = data.iloc[1:3, 2:4] 结果: 注意: 这里的区间是左闭右开,data.iloc[1:
', None) # 显示10行 pd.set_option('display.max_rows', 10) # 设置显示宽度为1000,这样就不会在IDE的输出框中换行了 pd.set_option(...选择多列。ix、iloc、loc方法都可使用。 只不过ix和loc方法,行索引是前后都包括的,而列索引则是前包后不包(与列表索引一致)。 iloc方法则和列表索引一致,前包后不包。...创建列。可以直接通过赋值完成,也可通过数据框的assign来完成赋值,不过后一种方法需要赋值给新表才能生效。...删除列。使用数据框的方法drop。...,axis=0为行循环 print(df.apply(transform, axis=1)) # 赋值到新列 print(df.assign(gender_c=df.apply(transform,
team.head() 二、查看数据框中的数据和联机帮助信息 1、查看特殊行的数据 (1)查看前n行:head(n),不指定n时默认前5行。...索引器中括号内行列下标的位置上都允许使用切片和花式索引,下例中行使用切片,列使用花式索引。 注意:下面的3:5表示下标为3和4的两行,[0,2]表示下标为0和2的两列。...6、根据给定条件查询数据 实现要领有两个: ① 因为多数条件都会涉及列标签,因此都要使用loc索引器(而非iloc索引器); ② 因为通常是寻找满足条件的行,所以索引器内部需要在行的维度上表达查询条件...索引器中的len(df)是想把当前数据框的长度作为新增加行的行标签。...having子句) ② filter函数返回满足过滤条件的分组中的记录,而不是满足条件的分组 ③ 其参数必须是函数,本例中lambda函数的形参x代表每个分组 ④ 当组对象存在多列时,filter
数据框与R中的DataFrame格式类似,都是一个二维数组。Series则是一个一维数组,类似于列表。数据框是Pandas中最常用的数据组织方式和对象。...方法用途示例示例说明info查看数据框的索引和列的类型、费控设置和内存用量信息。...查看特定列的唯一值In: print(data2['col2'].unique()) Out: ['a' 'b']查看col2列的唯一值 注意 在上述查看方法中,除了info方法外,其他方法返回的对象都可以直接赋值给变量...例如可以从dtype的返回值中仅获取类型为bool的列。 3 数据切片和切块 数据切片和切块是使用不同的列或索引切分数据,实现从数据中获取特定子集的方式。...Out: col1 col2 col3 0 2 a True 1 1 b True选择col3中值为True的所有记录多列单条件以所有的列为基础选择符合条件的数据
) #默认根据这一列从小到大给整个数据框排序arrange(test, desc(Sepal.Length)) #从大到小distinct,数据框按照某一列去重复unique 给向量去掉重复duplicated...,如果没有赋值,那么这个数据框还是没有新加,没有赋值,就没有产生补充select()filter()如何简化连续的步骤1....else2, ifelse(,,ifelse)在ifelse里加一个ifelse补充 case_when练习题1.加载deg.Rdata,根据a、b两列的值,按照以下条件生成向量x:load("deg.Rdata...对列表/向量中的每个元素实施相同的操作lapply(1:4,rnorm)两个数据框的链接merge可以合并inner_join:交集都存在的取inner_join(test1,test2,by="name...% # 矩阵变成数据框rownames_to_column() %>% #把行名变成一列mutate(group = rep(c("control","treat"),each = 3)) #新增一列group
第1个和第5个元素根据值x[x==10]#等于10的元素x[x的元素x[x %in% c(1,2,5)]#存在于向量c(1,2,5)中的元素%in%检查一个元素是否存在于一个向量中的运算符在执行...、行数和列数colnames(a) #查看列名rownames(a) #查看行名,默认值的行名就是行号,1.2.3.4...dim(a)#几行几列数据框的导出write.table(a,file = "...R中,像a这样的变量可以表示各种类型的数据结构,包括但不限于:数据框(Data Frames):如你的例子所示,a是一个数据框,它是一种具有行和列的表格数据结构。...提取元素- a[x,y]#第x行第y列- a[x,]#第x行- a[,y]#第y列- a[y] #也是第y列- a[a:b]#第a列到第b列- a[c(a,b)]#第a列和第b列- a$列名 #也可以提取列...(优秀写法,支持Tab自动补全,不过只能提取一列)直接使用数据框中的变量iris是R语言的内置数据,可以直接使用。
= T),这行代码是用来从数据框test中筛选出不重复的Species列,并保留所有列数据。...4、补充两个知识点:select()函数是用于从数据框(data.frame)或数据集(dataset)中选择特定的列。...filter()函数是用于从数据框(data.frame)或数据集(dataset)中筛选出符合特定条件的行。...5列(即最后一列)之外的所有列,然后将结果转换成矩阵(as.matrix),接着再选出前50行(head函数),最后使用pheatmap包中的pheatmap函数绘制热图。...①、多次赋值,产生多个中间的变量 ②、嵌套,代码不易读 ③、管道符号传递,简洁明了 三、条件语句和循环语句 1、if条件语句:满足()里面的条件,执行;不满足()里面的条件,不执行 ②、长脚本管理的两种方法
导读 Pandas之于日常数据分析工作的重要地位不言而喻,而灵活的数据访问则是其中的一个重要环节。本文旨在讲清Pandas中的9种数据访问方式,包括范围读取和条件查询等。 ?...以下面经典的titanic数据集为例,可以从两个方面特性来认识DataFrame: ? DataFrame是一个行列均由多个Series组成的二维数据表框,其中Series可看做是一个一维向量。...4. isin,条件范围查询,一般是对某一列判断其取值是否在某个可迭代的集合中。即根据特定列值是否存在于指定列表返回相应的结果。 5. where,妥妥的Pandas仿照SQL中实现的算子命名。...这里仍然是执行条件查询,但与直观不大相符的是这里会返回全部结果,只是将不满足匹配条件的结果赋值为NaN或其他指定值,可用于筛选或屏蔽值 ? 6. query,提到query,还得多说两句。...在DataFrame中,filter是用来读取特定的行或列,并支持三种形式的筛选:固定列名(items)、正则表达式(regex)以及模糊查询(like),并通过axis参数来控制是行方向或列方向的查询
而数据框的行名和列名分别对应着数据框的行和列的标识符,可以用row.names()和colnames()函数来获取和设置。 行名:数据框的每一行都有一个行名,用于标识不同的行。...[3] # [1] C 修改数据框 修改数据框中的元素可以使用赋值符号<-或者等号=。...# 2 Bob FALSE 21 London 删除数据框 下面示例代码展示了如何使用负数索引和subset()函数在R语言中删除数据框中的行或列,并在每个操作后注释了相应的输出结果。...= 25) cat("根据条件删除age为25岁的行后的数据框:\n") print(df_deleted_age) # 根据条件删除age为25岁的行后的数据框: # name age gender...<- subset(df, select = -c(age)) cat("根据条件删除age列后的数据框:\n") print(df_deleted_age_column) # 根据条件删除age列后的数据框
列表为统计计算的结果返回提供了一种便利的方法。 数据框(data frame)是和矩阵类似的一种结构。在数据框中,列可以是不同的对象。...可以根据索引数组去给数组中不规则的元素集合赋值或者将数组中特定的元素返回到一个向量中 array() 除了用设定一个向量dim 属性的方法来构建数组,它还可直接通过函数array将向量转换得到....对于可能属于数据框的列表对象有下面一些限制条件, 分量必须是向量(数值, 字符, 逻辑),因子,数值矩阵,列表或者其他数据框; 矩阵,列表和数据框为新的数据框提供了尽可能多的变量,因为它们各自拥有列,元素或者变量...数据框常常会被看作是一个由不同模式和属性的列构成的矩阵。...第一行可以有该数据框各个变量的名字。 随后的行中第一个条目是行标签,其他条目是各个变量的值。 scan() 函数 假定有三个数据向量,长度一致并且要求并行读入。
.DataSource = dt; 根据条件查询并重新绑定到DataGridView控件中(点击查询按钮,模糊查询) 一、单条件模糊查询 //获得界面上输入的查询的条件 string typeName...中的行,将所有列的数据一个个放入到文本控件中(cellClick事件)。...{ //”=”号左边给全局变量typeID赋值, ”=”号右边获得选中第一行第一列的值转为string类型(列标号以数据库中的顺序为准) typeID = this.dataGridView1....SelectedRows[0].Cells[0].Value.ToString(); //”=”号左边给文本框赋值, ”=”号右边获得选中第一行第二列的值转为string类型 this.textBox2...事件) 第一步、获取值 //(获得文本框的值) string TypeName = this.textBox2.Text; //(判断复选框是否选中)选中了给IsAddBed赋值为”是“,否则为”否“
这里两个数字都是闭合的,案例中[7:11]则选取的是第8行至第12行(pandas从0开始编号) 二、提取任意列 1、按照列名提取单列 ? 2、按照列名提取多列 ?...四、单条件筛选 筛选其实就是将某列符合特殊条件的筛选出来,那我们先设立一个小目标!将涨跌额为正数的筛选出来! 如何判断?无外乎为大于小于等于判断咯! ?...我们将这个布尔型数据作为一个参数,外面套上原始数据和中括号即可!就实现了筛选功能。 原理就是布尔型数据为真的话,罗列出来!...细心的朋友肯定会说:“你框我!不是转化涨跌幅咩!怎么搞成涨跌额了!” ? 发现传统的文本转数字不管用哇!为虾米呢?这个文本转数字只适用于数字以文本形式存储的数据,不适用于本身只能用文本形式存储的数据。...)将原始数据强制转化为浮点型数据,除以100,让原始数据保持不变;最后使用赋值将更改后的数据重新赋值给涨跌幅那一列。
,仅保留首次出现的元素2.3 新增列mutate(test, new = Sepal.Length Sepal.Width)#未赋值则数据框的列数不发生变化或:test$new = test$Sepal.Length...test$Sepal.Width#该语句运行完数据框列数即增加无需赋值2.4 筛选列、行select() #筛选列filter() #筛选行2.5 管道符号x1 = select(iris,-5)...#反选,筛选除第5列外的数据x2 = as.matrix(x1)x3 = head(x2,50) #截取前端行(前50行)heatmap(x3)-->嵌套heatmap(head(as.matrix(select...#管道符号快捷键“Ctrl”+“shift”+“M”3 条件和循环*3.1 if语句if(1){ }1:为一个逻辑值,不能为多个逻辑值组成的向量#若为T,则继续执行后续语句;若为T,则不继续执行长脚本管理方式...(X,MARGIN,FUNCTION,...)apply(test,2,mean)#1 X代表数据框/矩阵名#2 MARGIN以数值作代表,1为行,2为列#*3 FUNCTION为函数#如何取出30个随机数中最大的
4 常见数据结构和向量的关系及常见操作 4.1矩阵 前已述及,矩阵也是向量,特殊的向量,包含量阿哥附加的属性:行和列。所以,矩阵也有模式,例如数值型或字符型。但向量不能看做有一列或一行的矩阵。...直观上看,数据框更类似矩阵,有行和列两个维度,但是数据框与矩阵的不同是,数据框的每一列可以是不同的模式mode。...还有合并 apply族函数在数据框中的用法 apply lapply sapply apply 如果数据框的每一列的数据类型相同,则可以对该数据框使用apply函数。或针对数据框中的某些列应用。...假如我们以25岁为条件,那么需要把年龄转化为因子,比如大于25的为1,小于25的为0,或其他,用前面的ifelse函数进行赋值 排列组合,性别2个因子,年龄2个因子,所以会将收入分为4组,每组代表性别和年龄的一种组合...但是,tapply的第一个参数必须是向量,不能是矩阵或数据框,而回归分析必须至少两列的数据或数据框,其中第一列是被预测的变量,第二列或多列是预测变量。所以tapply函数不能满足任务。
是特殊的数据框 | 数据框 一列只能有一种数据 | 列表 没有限制 | 区分矩阵和数据框:根据生成它的函数 或 class() is()族函数 重点:数据框 1.数据框来源 (1)用代码新建 (2)由已有数据转换或处理得到...## [1] "up" df1[2,]# 第二行 带行名列名,还是数据框 ## gene change score ## 2 gene2 up 3 df1[,2]# 第二列 不带行名列名...,是向量 ## [1] "up" "up" "down" "down" df1[c(1,3),1:2] # 多行多列 数据框 ## gene change ## 1 gene1 up...根据筛选条件得到逻辑值向量(与被筛选的列向量相对应)2....rownames(df1) <- c("r1","r2","r3","r4") #只修改某一行/列的名 colnames(df1)[2] 列的列名,就是修改列名这个向量的第二个元素
插入多行; 4.插入某些查询的结果; - 注意,由于MySQL的安全机制,需要注意权限。 插入完整的行 需要指定插入的表名和行值。一般插入操作没有返回值,举例, 分析:第一列cust_id为。...因此当比给出列名的时候,必须正确的给出每列的值。 如果表的定义允许,可以选择在操作时忽略某些列。忽略的列必须满足如下条件, 1. 该列定义为允许; 2....要更新的表; 列名和他们的新值; 确定要更新行的过滤条件。 更新表中所有行; 更新表中特定行。...更新数据的两种方式, 语句由三部分组成, 例子,更新单列, 分析:总是以要更新的表的名字开始,为赋值命令 例子,使用多列更新时,只需要一次命令即可 分析: 1、如果多列更新,并且在一行或多行赋值时出现错误...2、为了删除每列的值,可以赋值为。 删除数据 使用语句,进行删除操作,形式如下 - 从表中删除特定行; - 从表中删除所有的行。
逗号之后的空位表示选择这些行的所有列(即所有的特征和标签)。 test 赋值操作,它会将选择的子集保存到一个新的变量 test 中。...这样做的目的通常是为了在后续的函数调用中简化代码,特别是在你想要操作数据框中特定的列时。 这会从 your_data_frame 数据框中选择列名与 vars 向量中的字符串相匹配的列。...执行这个操作后,你将得到一个新的数据框,其中只包含test数据框中Species列值为"setosa"或"versicolor"的行。...y = test2:表示要与test2数据框进行semi-join操作,即保留test1中与test2匹配的行。 by = 'x':指定要根据哪个列进行匹配。在这里,使用列x来进行匹配。...y = test1:表示要与test1数据框进行anti-join操作,即从test2中删除与test1匹配的行。 by = 'x':指定要根据哪个列进行匹配。在这里,使用列x来进行匹配。
领取专属 10元无门槛券
手把手带您无忧上云