首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

常用的像素操作算法:图像加法、像素混合、提取图像中的ROI

图像可以是看成是一个多维的数组。读取一张图片,可以看成是读入了一系列的像素内容。这些像素内容,按照不同的模式具有不同的格式。对于三通道的 RGB 位图来说,每个像素是一个 8-bit 整数的三元组。...图像的像素操作是比较基础的图像算法,下面列举三个常用的像素操作算法。 图像加法 图像的加法表示两个输入图像在同一位置上的像素相加,得到一个输出图像的过程。...ROI ROI(region of interest),表示图像中感兴趣的区域。...对于一张图像,可能我们只对图像中某部分感兴趣,或者要对目标进行跟踪时,需要选取目标特征,所以要提取图像的感兴趣区域。...像素操作是 cv4j 的基本功能之一,所有的像素操作算法都在Operator类中。

1.3K20

图像中的裂纹检测

机器学习模型 我们想要建立一个机器学习模型,该模型能够对墙壁图像进行分类并同时检测异常的位置。为了达到这个目的需要建立一个有效的分类器。它将能够读取输入图像并将其分类为“损坏”或“未损坏”两个部分。...在最后一步,我们将利用分类器学到的知识来提取有用的信息,这将有助于我们检测异常情况。对于这个类任务,我们选择在Keras中重载VGG16来完成它。...局部异常 现在我们要对检测出异常的图像进行一定的操作,使墙壁图像裂缝被突出。我们需要的有用信息位于顶层。因此我们可以访问:卷积层:上层是VGG结构,还有网络创建的更多重要功能。...,在该图像中,我已在分类为裂纹的测试图像上绘制了裂纹热图。...我们可以看到,热图能够很好地泛化并指出包含裂缝的墙块。 在裂纹图像中显示异常 03. 总结 在这篇文章中,我们为异常识别和定位提供了一种机器学习解决方案。所有这些功能都可以通过实现单个分类模型来访问。

7110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    图像中的裂纹检测

    机器学习模型 我们想要建立一个机器学习模型,该模型能够对墙壁图像进行分类并同时检测异常的位置。为了达到这个目的需要建立一个有效的分类器。它将能够读取输入图像并将其分类为“损坏”或“未损坏”两个部分。...在最后一步,我们将利用分类器学到的知识来提取有用的信息,这将有助于我们检测异常情况。对于这个类任务,我们选择在Keras中重载VGG16来完成它。...局部异常 现在我们要对检测出异常的图像进行一定的操作,使墙壁图像裂缝被突出。我们需要的有用信息位于顶层。因此我们可以访问:卷积层:上层是VGG结构,还有网络创建的更多重要功能。...,在该图像中,我已在分类为裂纹的测试图像上绘制了裂纹热图。...我们可以看到,热图能够很好地泛化并指出包含裂缝的墙块。 ? 在裂纹图像中显示异常 03. 总结 在这篇文章中,我们为异常识别和定位提供了一种机器学习解决方案。

    1.4K40

    数组列表中的最大距离

    现在你需要从两个不同的数组中选择两个整数(每个数组选一个)并且计算它们的距离。 两个整数 a 和 b 之间的距离定义为它们差的绝对值 |a-b| 。...你的任务就是去找到最大距离 示例 1: 输入: [[1,2,3], [4,5], [1,2,3]] 输出: 4 解释: 一种得到答案 4 的方法是从第一个数组或者第三个数组中选择 1, 同时从第二个数组中选择...列表中至少有两个非空数组。 所有 m 个数组中的数字总数目在范围 [2, 10000] 内。 m 个数组中所有整数的范围在 [-10000, 10000] 内。...maxdis, abs(arrays[j].front()-arrays[i].back())); } } return maxdis; } }; 2.2 优化 判断过了的数组...,可以进行合并,只有合并以后的 最大的值,最小的值 起作用 class Solution { public: int maxDistance(vector>& arrays

    2K20

    深度学习图像中的像素级语义识别

    2.RegressionLoss:即K+1的分类结果相应的Proposal的Bounding Box四个角点坐标值。 最终将所有结果通过非极大抑制处理产生最终的目标检测和识别结果。...其中,RPN是全卷积神经网络,通过共享卷积层特征可以实现proposal的提取; FastR-CNN基于RPN提取的proposal检测并识别proposal中的目标。...(3) 基于上下文的场景分类: 这类方法不同于前面两种算法,而将场景图像看作全局对象而非图像中的某一对象或细节,这样可以降低局部噪声对场景分类的影响。...算法:基于Gist的场景分类 步骤: 通过 Gist 特征提取场景图像的全局特征。Gist 特征是一种生物启发式特征,该特征模拟人的视觉,形成对外部世界的一种空间表示,捕获图像中的上下文信息。...Gist 特征通过多尺度多方向 Gabor 滤波器组对场景图像进行滤波,将滤波后的图像划分为 4 × 4 的网格,然后各个网格采用离散傅里叶变换和窗口傅里叶变换提取图像的全局特征信息。

    2K20

    使用OpenCV测量图像中物体之间的距离

    给定这样一个参考对象,我们可以使用它来计算图像中对象的大小。 今天,我们将结合本系列前两篇来计算对象之间的距离。 计算物体之间的距离与计算图像中物体的大小算法思路非常相似——都是从参考对象开始的。...当我们的图像被模糊后,我们应用Canny边缘检测器来检测图像中的边缘,然后进行膨胀+腐蚀来缩小边缘图中的缝隙(第7-9行)。...最后,我们将refObj实例化为一个3元组,包括: 物体对象的最小旋转矩形对象box 参考对象的质心。 像素/宽度比例,我们将用其来结合物体之间的像素距离来确定物体之间的实际距离。...然后,第12行计算参考位置和对象位置之间的欧式距离,然后除以“像素/度量”,得到两个对象之间的实际距离(以英寸为单位)。然后在图像上标识出计算的距离(第13-15行)。...注意图像中的两个0.25美分完全平行,这意味着所有五个顶点之间的距离均为6.1英寸。

    5K40

    使用OpenCV测量图像中物体之间的距离

    给定这样一个参考对象,我们可以使用它来计算图像中对象的大小。 今天,我们将结合本系列前两篇来计算对象之间的距离。 计算物体之间的距离与计算图像中物体的大小算法思路非常相似——都是从参考对象开始的。...当我们的图像被模糊后,我们应用Canny边缘检测器来检测图像中的边缘,然后进行膨胀+腐蚀来缩小边缘图中的缝隙(第7-9行)。...最后,我们将refObj实例化为一个3元组,包括: 物体对象的最小旋转矩形对象box 参考对象的质心。 像素/宽度比例,我们将用其来结合物体之间的像素距离来确定物体之间的实际距离。...然后,第12行计算参考位置和对象位置之间的欧式距离,然后除以“像素/度量”,得到两个对象之间的实际距离(以英寸为单位)。然后在图像上标识出计算的距离(第13-15行)。...注意图像中的两个0.25美分完全平行,这意味着所有五个顶点之间的距离均为6.1英寸。

    2K30

    解决wordpress图像后期处理失败,推荐的最大尺寸为2500像素的问题

    最近不少小伙伴在编辑文章上传图片的时候,偶尔会出现以下报错 图像后期处理失败,可能是服务器忙或没有足够的资源。请尝试上传较小的文件。...推荐的最大尺寸为2500像素 其实会有很多原因导致这个问题的出现,可以按照下面几点进行排查,尝试解决。...1、检查php版本是否7.0以上, 2、检查 php 的 upload_max_filesize ,允许上传文件的最大尺寸是否太小。 3、php 是否有加载 imagick 模块。...4、重命名您的文件,不要使用奇怪的文件名!撇号、引号、感叹号——诸如此类的东西是有风险的。尝试将您的文件重命名为只有 az 和数字的名称。 5、清除浏览器的缓存。...6、使用插件 「Disable "BIG Image" Threshold」,启动插件后,即可禁用「大图像」阈值。

    2.5K40

    卫星图像中的船舶检测

    :图像中心点的经度和纬度坐标 dataset也作为JSON格式的文本文件分发,包含:data,label,scene_ids和location list 单个图像的像素值数据存储为19200个整数的列表...标签,scene_ids和位置中的索引i处的列表值每个对应于数据列表中的第i个图像 类标签:“船”类包括1000个图像,靠近单个船体的中心。...想要实现的目标:检测卫星图像中船舶的位置,可用于解决以下问题:监控港口活动和供应链分析。...如果X [0]中的某些照片可能具有相同的所有3个波段,只需尝试另一个X [3]。...正如所看到的那样:它确实分类为具有直线和明亮像素的船舶图像 想这是找到一种方法来改进模型的下一步 - 尽管这是另一次。 或者给它第二次运行: ?

    1.8K31

    用python简单处理图片(4):图像中的像素访问

    前面的一些例子中,我们都是利用Image.open()来打开一幅图像,然后直接对这个PIL对象进行操作。如果只是简单的操作还可以,但是如果操作稍微复杂一些,就比较吃力了。...因此,通常我们加载完图片后,都是把图片转换成矩阵来进行更加复杂的操作。 python中利用numpy库和scipy库来进行各种数据操作和科学计算。...之后,就变成了一个rows*cols*channels的三维矩阵,因此,我们可以使用 img[i,j,k] 来访问像素值。...例2:将lena图像二值化,像素值大于128的变为1,否则变为0 from PIL import Image import numpy as np import matplotlib.pyplot as...如果要对多个像素点进行操作,可以使用数组切片方式访问。切片方式返回的是以指定间隔下标访问 该数组的像素值。

    2.2K20

    访问图像像素信息方式的优化

    如果你做图像处理有一定的经验,并且实战过N次,那么你一定知道代码优化对这个行业是多么的重要。今天,我们首先简单谈谈访问图像像素技术的优化。...4、图像的宽度为Width,每个像素占用的字节数用BytePerPixel变量表示,24位图像该变量的值为3,32位图像该变量的值为4. 首先我们看看如何访问24或32位图像的像素值。...Next 第二种表达方式更加突出了扫描行的大小并不一定等于图像宽度*每像素的占用的字节数,所以在每次扫描一行之后要注意补齐未处理的那部分。...这也是很多图像处理初学者在处理图像时可能会遇到处理后的图像效果沿对角线错位的原因。包括我们很多的专业的数字图像处理书,比如我常看的朗锐的那本VC图像处理教程,都没有很注意这个问题。...有两个问题提醒大家注意: 1、图像处理算法中在正常情况下都是先按行处理,在进行列方向递增,这样做对于代码的优化有很大的好处,因为图像在内存的数据摆布也是一行接着一行的。

    94230

    X射线图像中的目标检测

    2.1 算法(目标检测vs图像分类) 在图像分类中,CNN被用来当作特征提取器,使用图像中的所有像素直接提取特征,这些特征之后被用来分类X射线图像中违禁物品,然而这种方法计算代价昂贵,并且带来了大量的冗余信息...在本例中,我们尝试在X射线图像中检测的目标是违禁物品,如刀、枪、扳手、钳子和剪刀。...使用目标检测模型而不是分类模型的好处是我们能够训练足够的正样本,无需将负样本(图像)合并到训练集中,这是因为负样本早就隐式的存在于图像中,图像中与边界框(目标的真实边界框)不相关的所有区域都是负样本。...作者提出了位置敏感得分图,以解决图像分类中的平移不变性与目标检测中的平移差异性之间的难题。因此,该方法可以采用全卷积的图像分类器主干(例最新的残差网络Resnet)来进行目标检测。...其余三幅图像显示了使用测试数据集的不同子集(即50000、100000和150000负样本)测试每个模型时的性能; (2)与每种测试数据集下的其他模型相比,SSD_Inception_v2模型曲线下的面积最大

    1.6K20

    彩色图像中的人脸检测

    另外YUV的一个好处是彩色电视信号对黑白电视的兼容,因为当两个色差分量值为0的时候(代表没有色差)输出的图像是黑白的。...YUV的主要目的是在保证图像显示质量的前提下尽量缩小图像的体积,而且通过把亮度分量从RGB颜色分量中分离出来也能够使黑白显示设备能够兼容彩色信号。...YCbCr是YUV家族中在工业领域使用最广泛的一种标准,这也是为什么JPEG内部编码采用YCbCr的原因。...Face detection in color images 文章里系统的讲解了人脸检测的相关算法。...调试通过的matlab程序: %基于Ycbcr色彩空间肤色检测 close all; clear; clc; %将RGB色彩空间转换为Ycbcr色彩空间 Image_RGB = imread('test.jpg

    84720

    AI科技:如何利用图片像素之间的像素度进行图像分割?

    自答:这篇文章首先通过一般的CAM方法生成分割seed cues(前面文章有介绍),然后利用这些seed cues中已经标记标签的pixel计算相似度标签,利用卷积神经网络提取图片每个像素的特征,计算这些特征之间的相似度...此中,α=16(4-24) à 根据Mc得到 也就是将feature maps 取最大值得到一个map,再归一化,1减去该feature map 如下图展示CAM方法的结果: ?...如图中所示,若pixel pair中有一个像素为未确定标签的像素,则忽略不考虑;若pixel pair中两个像素属于同一个类别则记为1,属于不同类别则记为0;如上图所示,存在于Foreground和Background...这是一种通过周围有监督训练部分无监督的数据的一种方法。 (3)训练损失函数 (1)定义相关点集合P:d为欧式距离,γ为5 ?...第四步、Revising CAMs Using AffinityNet 原理:计算不确定像素提取的特征与CAM确定类别的像素提取的特征之间像素度的均值,根据未知标签的像素与某一类的确定像素之间相似度值较大

    1.8K20

    像素级压缩感知图像融合的论文

    2012 一种基于小波稀疏基的压缩感知图像融合算法 针对图像小波分解系数特点,提出了一种基于双放射状采样模式的压缩传感域图像融合算法。...直接对 CS 测量值采用绝对值最大作为融合规则。...2014 基于 DWT 的高频系数压缩感知图像融合 算法思想: 传统的基于 DWT 的压缩感知图像融合方法针对的是整个稀疏系数,由于小波系数的低频部分为非稀疏的,导致其压缩重构质量差。...2015 基于NSCT与DWT的压缩感知图像融合 非下采样轮廓波变换NSCT具有良好的各向异性,但其对细节信息捕捉能力较差,而 DWT 具有较强的多分辨率和局部化特性,能较好地分解出图像的细节信息, 通常在将图像进行融合之前...2013 Entropy Dependent Compressive Sensing based Image Fusion 通过计算熵来计算信息量的多少,与门限值比较之后再分配给相应的测量次数,融合是简单的绝对值最大原则

    1K70

    图像相似度比较和检测图像中的特定物

    对普通人而言,识别任意两张图片是否相似是件很容易的事儿。但是从计算机的角度来识别的话,需要先识别出图像的特征,然后才能进行比对。在图像识别中,颜色特征是最为常见的。...原图和直方图均衡化比较.png 二者的相关性因子是-0.056,这说明两张图的相似度很低。在上一篇文章 图像直方图与直方图均衡化 中,已经解释过什么是直方图均衡化。...直方图反向投影 所谓反向投影就是首先计算某一特征的直方图模型,然后使用模型去寻找图像中存在的该特征。 ?...来看看是怎样使用反向投影的,需要先计算出样本的直方图,然后使用模型去寻找原图中存在的该特征。反向投影的结果包含了:以每个输入图像像素点为起点的直方图对比结果。在这里是一个单通道的浮点型图像。...总结 直方图比较和直方图反向投影的算法都已经包含在cv4j中。 cv4j 是gloomyfish和我一起开发的图像处理库,纯java实现,目前还处于早期的版本。

    2.8K10

    【CCD图像检测】2:黑白图像检测的硬件设计

    CCD图像检测 作者:一点一滴的Beer   指导教师:Chen Zheng  单位:WHU 二、黑白图像检测的硬件设计 2.1 电源提供。...但在实际使用过程中,我们发现采用固定参考电压的二值电路在CCD视野比较远时,仍然会出现图像无法分割的现象,此时该方法不再适用,故可以考虑采用边沿检测的二值电路。...3~4µs(R2=1.3K) 图15:赛道中央黑线产生的视频信号     一般为了获得两组视频信号在同样的时间轴点时获得最大的电压差,就要求,滞后信号尽量滞后。...硬件二值最大的特点是:输出的是模拟TTL电平信号,而这种信号是MCU所能处理和识别的电平信号,这就给硬件处理图像提供了很大的发展空间。图像采集的主要问题就是精度和保真度。...用HCS12单片机输入捕捉来对 微分电路视频输出进行捕捉, 检测到跳变时,就计录当前的TCNT,然后存储在一个数组中,显然,这样一行在理想智能汽车赛道中,最多10个, 就如以下情况(而且发生的可能极小-

    1.1K10
    领券