首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Spark_Day07:Spark SQL(DataFrame是什么和数据分析(案例讲解))

    可以发现Schema封装类:StructType,结构化类型,里面存储的每个字段封装的类型:StructField,结构化字段。...} } 08-[掌握]-RDD转换DataFrame之自定义Schema 依据RDD中数据自定义Schema,类型为StructType,每个字段的约束使用StructField定义,具体步骤如下...} 09-[掌握]-toDF函数指定列名称转换为DataFrame ​ SparkSQL中提供一个函数:toDF,通过指定列名称,将数据类型为元组的RDD或Seq转换为DataFrame,实际开发中也常常使用...范例演示:将数据类型为元组的RDD或Seq直接转换为DataFrame。...{DataFrame, SparkSession} /** * 隐式调用toDF函数,将数据类型为元组的Seq和RDD集合转换为DataFrame */ object _03SparkSQLToDF

    2.6K50

    Note_Spark_Day07:Spark SQL(DataFrame是什么和数据分析(案例讲解))

    要么是传递value,要么传递Seq 07-[掌握]-RDD转换DataFrame之反射类型推断 ​ 实际项目开发中,往往需要将RDD数据集转换为DataFrame,本质上就是给RDD加上Schema...} } 08-[掌握]-RDD转换DataFrame之自定义Schema 依据RDD中数据自定义Schema,类型为StructType,每个字段的约束使用StructField定义,具体步骤如下...} 09-[掌握]-toDF函数指定列名称转换为DataFrame ​ SparkSQL中提供一个函数:toDF,通过指定列名称,将数据类型为元组的RDD或Seq转换为DataFrame,实际开发中也常常使用...范例演示:将数据类型为元组的RDD或Seq直接转换为DataFrame。...{DataFrame, SparkSession} /** * 隐式调用toDF函数,将数据类型为元组的Seq和RDD集合转换为DataFrame */ object _03SparkSQLToDF

    2.3K40

    详解Apache Hudi Schema Evolution(模式演进)

    从 0.11.0 版本开始,支持 Spark SQL(spark3.1.x 和 spark3.2.1)对 Schema 演进的 DDL 支持并且标志为实验性的。...将嵌套字段的数据类型从 int 提升为 long Yes Yes 对于复杂类型(map或array的值),将数据类型从 int 提升为 long Yes Yes 在最后的根级别添加一个新的不可为空的列...作为一种解决方法,您可以使该字段为空 向内部结构添加一个新的不可为空的列(最后) No No 将嵌套字段的数据类型从 long 更改为 int No No 将复杂类型的数据类型从 long 更改为...int(映射或数组的值) No No 让我们通过一个示例来演示 Hudi 中的模式演进支持。...在下面的示例中,我们将添加一个新的字符串字段并将字段的数据类型从 int 更改为 long。

    2.1K30

    Structured API基本使用

    和 dataSets 中很多操作都依赖了隐式转换 import spark.implicits._ 可以使用 spark-shell 进行测试,需要注意的是 spark-shell 启动后会自动创建一个名为...spark 的 SparkSession,在命令行中可以直接引用即可: 1.2 创建Dataset Spark 支持由内部数据集和外部数据集来创建 DataSet,其创建方式分别如下: 1....支持两种方式把 RDD 转换为 DataFrame,分别是使用反射推断和指定 Schema 转换: 1....RDD 转换为 dataFrame val deptDF = spark.createDataFrame(rowRDD, schema) deptDF.show() 1.4 DataFrames与Datasets...互相转换 Spark 提供了非常简单的转换方法用于 DataFrame 与 Dataset 间的互相转换,示例如下: # DataFrames转Datasets scala> df.as[Emp] res1

    2.7K20

    客快物流大数据项目(四十四):Spark操作Kudu创建表

    这是可以在Spark应用程序中广播的主要可序列化对象。此类代表在Spark执行程序中与Kudu Java客户端进行交互。...KuduContext提供执行DDL操作所需的方法,与本机Kudu RDD的接口,对数据执行更新/插入/删除,将数据类型从Kudu转换为Spark等。...创建表 定义kudu的表需要分成5个步骤: 提供表名 提供schema 提供主键 定义重要选项;例如:定义分区的schema 调用create Table api 代码开发 package cn.it...这是因为在这里,我们调用了Kudu Java客户端本身,它需要Java对象(即java.util.List)而不是Scala的List对 象;(要使“asJava”方法可用,请记住导入JavaConverters...点击Table id 可以观察到表的schema等信息:

    57141

    spark2的SparkSession思考与总结2:SparkSession有哪些函数及作用是什么

    > beanClass) 应用schema到Java Beans的RDD 警告:由于Java Bean中的字段没有保证的顺序,因此SELECT *查询将以未定义的顺序返回列。...> beanClass) 应用schema到Java Bean list 警告:由于Java Bean中的字段没有保证的顺序,因此SELECT *查询将以未定义的顺序返回列。...这个方法需要encoder (将T类型的JVM对象转换为内部Spark SQL表示形式)。这通常是通过从sparksession implicits自动创建。...这个方法需要encoder (将T类型的JVM对象转换为内部Spark SQL表示形式)。...这个方法需要encoder (将T类型的JVM对象转换为内部Spark SQL表示形式), 或则可以通过调用 Encoders上的静态方法来显式创建。

    3.6K50

    Spark2Streaming读Kerberos环境的Kafka并写数据到Kudu

    服务的配置项将spark_kafka_version的kafka版本修改为0.10 ?...5.将编译好的spark2-demo-1.0-SNAPSHOT.jar包上传至服务 ? 在conf目录下新增0288.properties配置文件,内容如下: ?...5.总结 ---- 1.本示例中SparkStreaming读取Kerberos环境的Kafka集群,使用的是spark-streaming-kafka0.10.0版本的依赖包,在Spark中提供两个的另外一个版本的为...3.在前面的文章Fayson也有介绍Java访问Kerberos环境的Kafka,需要使用到jaas.conf文件,这里的jaas.conf文件Fayson通过spark2-submit的方式指定,注意我们的...5.Spark2默认的kafka版本为0.9需要通过CM将默认的Kafka版本修改为0.10 GitHub地址如下: https://github.com/fayson/cdhproject/blob/

    2.6K31

    Spark必知必会 | Spark SQL自定义函数UDF、UDAF聚合函数以及开窗函数的使用

    ,也就是初始化bufferSchema函数中定义的两个变量的值sum,count * 其中buffer(0)就表示sum值,buffer(1)就表示count的值,如果还有第3个,则使用buffer...,有可能每个缓存变量的值都不在一个节点上,最终是要将所有节点的值进行合并才行 * 其中buffer1是本节点上的缓存变量,而buffer2是从其他节点上过来的缓存变量然后转换为一个Row对象,然后将...,将b2中的值合并到b1中 * @param b1 * @param b2 * @return */ override def merge(b1: DataBuf, b2:...merge函数,对两个值进行 合并, * 因为有可能每个缓存变量的值都不在一个节点上,最终是要将所有节点的值进行合并才行,将b2中的值合并到b1中 * @param b1 * @param...四、开窗函数的使用 1、在Spark 1.5.x版本以后,在Spark SQL和DataFrame中引入了开窗函数,其中比较常用的开窗函数就是row_number该函数的作用是根据表中字段进行分组,然后根据表中的字段排序

    4.3K10

    2021年大数据Spark(二十五):SparkSQL的RDD、DF、DS相关操作

    获取DataFrame/DataSet      实际项目开发中,往往需要将RDD数据集转换为DataFrame,本质上就是给RDD加上Schema信息,官方提供两种方式:类型推断和自定义Schema。...指定类型+列名 除了上述两种方式将RDD转换为DataFrame以外,SparkSQL中提供一个函数:toDF,通过指定列名称,将数据类型为元组的RDD或Seq转换为DataFrame,实际开发中也常常使用...,也就是列名很长的时候不会用...代替   } } ​​​​​​​自定义Schema 依据RDD中数据自定义Schema,类型为StructType,每个字段的约束使用StructField定义,具体步骤如下..., false) :: Nil)*/     val schema: StructType = StructType(List(       StructField("id", IntegerType,...DataFrame = RDD[Row] + Schema组成,在实际项目开发中灵活的选择方式将RDD转换为DataFrame。 ​​​​​​​

    1.3K30
    领券