1、如果使用PPP协议,帧最大长度1510字节,其中数据长度(加载上层的协议数据)不超过1500字节; 2、如果在以太网中,帧的长度为:64~1518字节(10~100Mbps 的以太网),1G及以上的以太网...,帧长度为512~1518字节;其中数据长度(加载上层的协议数据)不超过1500字节。
import difflib a = open('./1.txt', 'U').readlines() b = open('./2.txt', 'U').re...
所以我就用资深数据分析师那意味深长的语气劝他(而且一定要营造出分析结果不理想是他数据的问题),R包有很多,为何不换一个呢?...头脑风暴 我有一个设想: 用root权限,新建一个环境R4.1,然后在里面安装R4.1 在R4.1中安装那几个包 将Rstudio的R版本设置为新建环境的R4.1 我的顾虑: 不确定我用root新建的环境...,能不能让大家使用 不确定Rstudio-server能不能指定新建环境中的R4.1版本 3....其它人用Rstudio-server安装R包 因为现在Rstudio-server用的是conda环境中的R4.1,它会在conda环境中有一个library,普通用户没有写入的权限,安装R包时会在自己的路径下自动新建一个...2,外部是可以用conda环境中的程序的,指定路径就行。
于是想重复一下,这篇文献的数据来源是GOBO,一个乳腺癌的专属数据库,所以我一开始选择了调用TCGA的数据,但是很可惜这个结果的癌症种类特异性是比较强的,试了几种癌症都没有这么显著的结果,要么就是相反的结果...不过在曾老师的指引之下我顺便探索了一下不同数据来源的生存分析结果会有什么不同。...2015.11.1 TCGA 1.数据获取(RTCGA) RTCGA是一个可以调用TCGA数据并为画生存分析曲线做方便的数据准备的包,不同于常见的生存分析曲线的地方在于,这个包可以把两个基因的表达信息整合到一起...除了本文要用到的clinical数据和rnaseq数据外,这个包还支持一系列TCGA数据的调用,但值得注意的是,只能调用2015年11月1日版本的TCGA数据,这是一个比较大的缺点(见下图)。 ?...不过我这里采取的分组和文献中不完全相同,文献中是把两种基因的表达量整合到一起,而我选择了把所有可能的情况都列入分组。
SAP自带的函数: CTVB_COMPARE_TABLES和BKK_COMPARE_TABLES; 似乎可以比较两个内表,得出第二个内表不同于第一个内表的部分...因为,我在测试数据时,发现这两个函数的效果不那么简单。 如果上述函数确实可以,提取两个内表不同部分,则我可以据此做两次比较,得到两个内表的交集。...另一个问题,想请教大家,在上面代码里,第二层循环是为了找出,第一层循环的当前记录,在第二个内表里是否存在; 所以,如果ABAP自带了,判断一个内表中,是否存在某个记录的函数的话,那第二层循环就可以省去...以下转自华亭博客:感谢华亭的分享: 函数模块:CTVB_COMPARE_TABLES 这个函数模块比较两个内表,将被删除、增加和修改的内表行分别分组输出。...输入参数: TABLE_OLD:旧表 TABLE_NEW:新表 KEY_LENGTH:键长度,指定内表中的前若干个字节(在 Unicode 系统中为字符,因此指定长度内不能存在数值类型的字段)为主键
所以我就用资深数据分析师那意味深长的语气劝他(而且一定要营造出分析结果不理想是他数据的问题),R包有很多,为何不换一个呢?...头脑风暴 我有一个设想: 用root权限,新建一个环境R4.1,然后在里面安装R4.1 在R4.1中安装那几个包 将Rstudio的R版本设置为新建环境的R4.1 我的顾虑: 不确定我用root新建的环境...,能不能让大家使用 不确定Rstudio-server能不能指定新建环境中的R4.1版本 3....显示上面的包都安装失败,那我就分开安装,然后都安装成功了,最后这两个包也安装成功了。 胜利的喜悦: ? 8....2,外部是可以用conda环境中的程序的,指定路径就行。
该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:MySQL中TEXT数据类型的最大长度 在MySQL中,TEXT数据类型用于存储较大的文本数据...,其最大长度取决于具体的TEXT类型。...以下是MySQL中不同TEXT类型的最大长度: TINYTEXT:最大长度为255个字符(2^8-1)。 TEXT:最大长度为65,535个字符(2^16-1)。...与TEXT类型类似,BLOB类型也有不同的子类型(TINYBLOB、BLOB、MEDIUMBLOB和LONGBLOB),其最大长度与对应的TEXT类型相同。...当使用TEXT或BLOB类型存储较大的数据时,可能会影响性能和存储空间的使用。在设计数据库时,应根据实际需求和性能考虑选择合适的数据类型和存储方案。
现在Java中实现并发编程存在多种方式,我们希望了解这么做所带来的性能提升及风险是什么。从经过260多次测试之后拿到的数据来看,还是增加了不少新的见解的,这里我们想和大家分享一下。 ?...我们来通过两个任务来进行测试,一个是CPU密集型的,一个是IO密集型的,同样的功能,分别在4种场景下进行测试。不同实现中线程的数量也是一个非常重要的因素,因此这个也是我们测试的目标之一。...注意,上图是从20000毫秒开始的。 1. 线程过少会浪费CPU,而过多则会增加负载 从图中第一个容易注意到的就是柱状图的形状——光从这4个数据就能大概了解到各个实现的表现是怎样的了。...单线程执行时间:118,127毫秒,大约2分钟 注意,上图是从20000毫秒开始的 1. 8个线程与16个线程相差不大 和IO测试中不同,这里并没有IO调用,因此8个线程和16个线程的差别并不大,Fork...基础库 我们是在EC2的c3.2xlarge实例上运行的本次测试,它有8个vCPU核以及15GB的内存。vCPU是因为这里用到了超线程技术,因此实际上只有4个物理核,但每个核模拟成了两个。
假设你有序列AAA和ATA,怎么用R比较它们的差异,即第二个字符,并返回差异的位点与字符?...我用谷歌搜索这个问题时发现stackoverflow上有类似的提问,但不完全一致,基本就是问找出差异的字符,并没有我想要的这么全。...= "")) a,b是两个字符串。...,如果你将两个序列呼唤,就不work了!..."")) character(0) > do.call(setdiff, strsplit(c("AAA", "ATA"), split = "")) character(0) 相关资料不多,终于在R博客看到一个实现类似需求的函数
另外,准备为一个产品级项目更新某个依赖库,但不知道更新此库对我们的影响有多大,希望知道目前版本和希望更新的版本之间的 API 差异。...索性发现了 JustAssembly 可以帮助我们分析程序集 API 的变化。本文将介绍如何使用 JustAssembly 来分析不同版本程序集 API 的变化。...开始比较 启动 JustAssembly,在一开始丑陋(逃)的界面中选择旧的和新的 dll 文件,然后点击 Load。 然后,你就能看到新版本的 API 相比于旧版本的差异了。...关于比较结果的说明 在差异界面中,差异有以下几种显示: 没有差异 以白色底显示 新增 以绿色底辅以 + 符号显示 删除 以醒目的红色底辅以 - 符号显示 有部分差异 以蓝紫色底辅以 ~ 符号显示 这里可能需要说明一下...对于每一个差异,双击可以去看差异的代码详情。 上图我的 SourceFusion 项目在版本更新的时候只有新增的 API,没有修改和删除的 API,所以还是一个比较健康的 API 更新。
前面我的学徒的一个推文:不同数据来源的生存分析比较 , 代码细节和原理展现做的非常棒,但是因为学徒的TCGA数据库知识不熟悉,所以被捉到了一个bug,先更正一下: 有留言说:“TCGA里病人01-09是肿瘤...(其他来源的数据也是一样的做法) 回到我的数据 和上次一样,先读取数据并预处理 rm(list = ls()) options(stringsAsFactors = F) # 下面的两个数据文件均是手动下载的...,select_exp.txt是取了想要的两种基因的数据,因为原数据包含所有基因的表达信息,读进R里非常慢 exp=read.table("select_exp.txt",sep = '\t',header...TCGA-BRCA.survival.tsv",sep = '\t',header = T) sul=data.frame(patient=sul$sample,OS=sul$OS,OS.time=sul$OS.time) # 融合两个数据...上次的结果如下: ? 比较之下差别还是很大的,以后要多多注意了。
使用CPM去除文库大小影响 之所以需要normalization,就是因为测序的各个细胞样品的总量不一样,所以测序数据量不一样,就是文库大小不同,这个因素是肯定需要去除。...,因为有一些scRNA-seq建库方法具有3端偏好性,一般是没办法测全长转录本的,所以转录本的长度跟表达量不是完全的成比例。...对于这样的数据,需要重新转换成 reads counts 才能做下游分析。...适用于bulk RNA-seq的normalization方法 比较流行的有: DESeq的size factor (SF) relative log expression(RLE) upperquartile...也可以比较它相当于最粗糙的对数转换,效果好在哪里。
“哈哈,我们在训练我们的模型并且希望得到更加准确的结果,但基于实际的情况(比如算力、时间),往往会按照一定策略来选择。...本文介绍了几种常见的数据集划分与交叉验证的方法策略以及它们的优缺点,主要包括了Train-test-split、k-fold cross-validation、Leave One Out Cross-validation...等,包括了代码层的实现与效果的比较,比较适合综合阅读一次。...scoring = 'accuracy', cv = cv_repeated, n_jobs = -1 )print('Accuracy: %.3f (%.3f)' % (scores_r.mean...(), scores_r.std()))) “The resulted accuracy is: 0.775 (0.042) Accessing the model accuracies across
host1上,添加路由如下 route add default gw 172.24.100.14 #添加默认网关路由,保证从host1上到192.168.122.0/24网段的请求先到达... route add -net 172.24.0.0 netmask 255.255.0.0 dev eth0 #添加路由,实际上就是指路,指定到172.24.0.0/16网段去的请求通过... route add -net 192.168.122.0 netmask 255.255.255.0 dev eth1 #添加路由,指定到192.168.122.0/24网段去的请求通过...host3上,添加路由如下 route add default gw 192.168.122.214 #添加默认网关路由,保证从host3上到172.24.0.0/16网段的请求先到达
本文在做学术论文中,正好想做一下把y轴一些数据进行截断的效果。通过网上检索,整理了一下两种方式构建坐标轴截断图。...下面两第一个图是未加axis.break()的结果,第二幅是加了该参数的结果。...首先随机构造一个数据,,我们想把y为7~17的数数据进行截断。思路是:构造一列:type,把小于7的命名为“samll”,大于17的命名为“big”,然后利用facet效果构建图。...参考资料: R语言作图——坐标轴截断画图 http://blog.sina.com.cn/s/blog_6a4ee1ad0102x5at.html ggplot坐标轴截断 https://www.jianshu.com.../p/0e4fa8849479 代码,数据与相关资料已放在我的github上了,见文末阅读原文。
1、获取数组相同元素 array_intersect()该函数比较两个(或更多个)数组的键值,并返回交集数组,该数组包括了所有在被比较的数组(array1)中, 同时也在任何其他参数数组(array2...,并返回交集,与 array_intersect() 函数 不同的是,本函数除了比较键值, 还比较键名。...> // Array ( [a] => red [b] => green [c] => blue/ / ) 2、获取数组中不同元素 array_diff() 函数返回两个数组的差集数组。...该数组包括了所有在被比较的数组中,但是不在任何其他参数数组中的键值。 在返回的数组中,键名保持不变。 <?...$result); // Array ( [d] => yellow )/ / 以上这篇php 比较获取两个数组相同和不同元素的例子(交集和差集)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持
本文在做学术论文中,正好想做一下把y轴一些数据进行截断的效果。通过网上检索,整理了一下两种方式构建坐标轴截断图。...下面两第一个图是未加axis.break()的结果,第二幅是加了该参数的结果。...= "height", main="test image") ## ylim -282.7 231 axis.break(2,90,breakcol="snow",style="gap")##去掉中间的那两道横线...首先随机构造一个数据,,我们想把y为7~17的数数据进行截断。思路是:构造一列:type,把小于7的命名为“samll”,大于17的命名为“big”,然后利用facet效果构建图。
前面介绍了多个样本均数的多重比较,多样本非参数检验后的多重比较: R语言多个样本均数的多重比较 R语言非参数检验后的多重比较 今天学习下重复测量数据的多重比较,本篇内容和课本结果差异较大,如有错误欢迎指出...使用的数据来自孙振球,徐勇勇《医学统计学》第4版。课本的电子版已上传到QQ群,加群即可免费获取!...ggplot(aes(times,mm))+ geom_line(aes(group=group,color=group),size=1.2)+ theme_bw() 接下来是重复测量数据的多重比较...时间点比较 课本说因为事后检验重复次数太多难以承受,但是我们用计算机很快,所以用事后检验也没什么问题。 事后检验可以参考组间比较,根据组别进行分组,分组比较不同时间点的差别。...事前检验课本采用配对t检验,全都和t0的数据进行比较。
本文来自 stack overflow 上的一个帖子 base与data.table适用 SQL版 流行的dplyr 最后看看各种操作的性能吧 data.table 就是牛批!
前言 在业务中,我们会遇到新老平台的数据迁移工作,如果这个时候表字段还有些许的不一样,那我们肯定不能用表数据导入导出功能了,此时,我们便会需要另一个工具,kettle。...这款软件 使用 我们新建一个转换 (这里因为我之前用过了,所以界面上有点东西) 输入配置 在输入中双击表输入 右键选择编辑步骤 按照图中所示输入你要作为数据源的数据库信息 输入能查出你要转移数据的...sql并且测试是否可以获取到数据 此时我们的数据源就配置好了 输出配置 双击输出里的 插入/更新 此时这两个图形中间会有条线(自动关联上了),如果没有我们只需要按住键盘shift键,然后鼠标点击输入拖动到...插入/更新 即可建立连接,我们此时再右键 插入/更新 ,点击编辑步骤,打开后点击新建 接下来和输入的操作一样,配置数据库的相关信息,我这里就不再展示了,因为和刚刚一样 点击目标表后面的浏览,选择你要把数据输入到哪张表里...在 用于查询的关键字 里将两张表的id作为关联 点击下面的编辑配置两张表字段之间的关联关系(注意,上面的数据库连接要是你刚刚新建的那个数据库连接信息) kettle,启动 此时,我们便可以点击右上角的启动按钮了
领取专属 10元无门槛券
手把手带您无忧上云