展开

关键词

智能时代如何构建金融欺诈体系?

接下来明特量化CRO苏建成为大家做了以“大数据+AI打造互联网金融欺诈体系”为主题的分享。 ? 他认为要在新形势下建立有效的互联网金融欺诈体系,关键是大数据+AI。 具体来讲,交叉认证、规制引擎、外部引擎、模型策略是构建欺诈决策体系的四种方法,常用的欺诈方法有逻辑回归、随机森林、神经元网络、统计分布异常检测、文本挖掘及模糊匹配、复杂网络分析等。 金融欺诈任重道远,苏建成认为在未来金融大数据风控会呈现出三大趋势:1、欺诈套路层出不穷,欺诈与其的对抗将长久存在;2、随着国家对个人信息保护力度的加强,大数据欺诈公司的数据来源会受到一定的影响;3 、目前第三方欺诈公司推出的服务产品有同质化的特点,预计行业发展到后期会竞争加剧,最终会形成几家专业化的行业巨头。

1.1K90

金融欺诈场景下的Spark实践

推荐阅读: 1,Spark Structured Streaming高级特性 2,Spark高级操作之json复杂和嵌套数据结构的操作一...

806100
  • 广告
    关闭

    腾讯云精选爆品盛惠抢购

    腾讯云精选爆款云服务器限时体验20元起,还有更多热门云产品满足您的上云需求

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    精品教学案例 | 金融交易欺诈案例研究

    1.金融欺诈问题介绍 1.1问题描述 随着金融科技的发展,移动支付已经在人们的生活中占据越来越重要的地位。大家在生活中肯定会经常用到支付宝、微信等移动支付方式。 随着移动金融支付的普及,金融欺诈问题越来越成为一个严峻的挑战。不同于传统现金支付或者去银行柜台转账,移动金融支付往往只需要输入密码或者指纹,很容易发生客户被诈骗的事件。 从上面的信息我们可以看到,大概有0.047%的交易是欺诈交易,也就是说每一万笔交易中有大概五笔交易是欺诈交易。 这在现实生活中是一个可怕的现象,仅支付宝每天的交易规模都在上亿笔,如果0.047%的金融欺诈交易概率发生,会是一个非常可怕的数字,因此这是一个非常值得关注的问题。 当然,想更加准确地识别金融欺诈交易,则需要更加复杂的机器学习算法。

    73520

    信用卡欺诈

    最后一列Class,0为正常,1为欺诈 2、程序解读 2.1 读取文件 #! lambda x: 1 if x > 1.5 else 0) data['V21_'] = data.V21.map(lambda x: 1 if x > 0.6 else 0) print('每个单一属性的欺诈记录与整车记录的差异统计 :') print(data.describe()) print(data.sum()) 每个单一属性的欺诈记录与整车记录的差异统计: Time V1 print('欺诈记录的占比:') print(data.Normal.value_counts()) print() print(data.Fraud.value_counts()) pd.set_option ("display.max_columns",101) print(data.head()) 欺诈记录的占比: 1.0 284315 0.0 492 Name: Normal, dtype

    37430

    大会 | 智能时代安全领域的巨变,从欺诈汽车、主机到法律

    面对手握机器学习的黑灰产,如何进行欺诈? 怎么给模型埋后门? 上传个对抗样本就可以吃饭让别人买单? …… 好吧,AI 安全远不只是熊猫和长臂猿的故事。 3.基于人工智能的风控和欺诈引擎 黄铃,慧安金科创始人,清华大学交叉信息研究院兼职教授,英特尔研究院资深科学家 黄铃在报告中介绍了他们用人工智能技术做金融风控和欺诈的经验。 ? ,传统风控和欺诈的方法在覆盖率和精准度上都存在一些问题,而且不能应对新的欺诈行为。 该引擎能够基于少量(甚至没有)标签的情况下、结合客户应用场景去主动进行风控和欺诈检测。 黄铃首先向在座的听众介绍了半监督机器学习。 基于以上的这些技术,他们做出了欺诈产品「网铃」,该产品能够使用人工智能来分析海量数据行为数据,在不侵犯个人隐私,无预知欺诈的类型和特点前提下,仍然可以主动地在千万级用户中识别出不正常的行为和关联。

    34640

    金融科技&大数据产品推荐:众安科技X-model欺诈

    欺诈 2、所属分类 金融科技 · 风控 3、产品介绍 众安科技智能数据产品基于海量数据源和资深实战经验,为客户提供精细化风险管理及定制化模型搭建服务。 众安科技X-model欺诈产品基于众安在各类消费金融场景下沉淀的实战风控经验和底层风控模型,针对不同场景和业务阶段,实现对欺诈风险由点及面的全面识别。 4、应用场景/人群 在金融行业,产品的应用者主要包括是风控团队,欺诈策略团队,审理团队等。 主要应用场景如下: 消费金融场景 消费金融产品快速上线时,将欺诈风险分为主动风险和被动风险两大类。 通过这些画像标签,可以对群组、社区特征进行风险降级,从而提升整个金融行业而对于欺诈智能策略的应用,不断迭代欺诈策略的准确性且达到支持业务发展的目的。 欺诈是整个金融行业不可避免的一环,随着行业发展,越来越多的营销行为中也会受到团伙性质下“薅羊毛”的风险。众安欺诈正是伴随行业发展而不断迭代欺诈策略。

    1.1K115

    营销业务欺诈全流程

    1 欺诈定义 欺诈是用户主观、以非法占有为目的,采用虚构事实或隐瞒事实真相的方法,骗取他人财物或金融机构信用,破坏金融管理秩序的行为。 按照欺诈的人数来分可分为:个体欺诈和团伙欺诈; 按照欺诈的主体来可分为第一、第二、第三方欺诈; 按照欺诈的行为可分为:金融信贷欺诈、互联网业务欺诈和信用卡欺诈三大类。 按照欺诈的行为,大的方向上可分为:金融信贷欺诈、互联网业务欺诈和信用卡欺诈三大类,如果进一步 细分落到具体的场景上有:盗刷、薅羊毛、骗贷、套现、刷单、 刷好评等行为,根据不同的欺诈场景的应对方法是有所不同的 在此背景下,为避免营销资源浪费,在加强活动规则设计的同时,亟需运用技术手段搭建营销欺诈系统,以保护良好营销环境,提升营销效果。 现实中,羊毛党会结合第三、四类薅羊毛方式,并存在与平台、商家瓜分利益,发展趋势更具规模化、产业化,这个是营销欺诈的主要目标。

    12550

    爱数课实验 | 第六期-金融欺诈案例研究

    随着移动金融支付的普及,金融欺诈问题也越来越成为一个严峻的挑战。不同于传统现金支付或者去银行柜台转账,移动金融支付往往只需要输入密码或者指纹,很容易发生客户被诈骗的事件。 PaySim使用真实的私人交易数据集来生成模拟数据集,从而完善刻画了一些正常的交易操作,并且加入了一些欺诈交易事件,以便之后评估监测方法的表现。 金融诈骗相关问题分析 2.1 金融交易时间分布状况分析 从上面的信息可以看到,大概有0.047%的交易是欺诈交易,也就是说每一万笔交易中大概有五笔交易是欺诈交易,而支付宝每天的交易规模都在上亿笔,如果金融欺诈交易发生概率是 0.047%,那么金融欺诈交易的数量会是一个非常可怕的数字。 想更加准确地识别金融欺诈交易,则需要更加复杂的机器学习算法。 3. 机器学习方法识别金融交易欺诈 3.1 数据预处理 该数据集不需要处理缺失值,首先删除无关的列,并对类别型特征进行数值编码。

    8520

    欺诈模型(数据不平衡)

    而且recall是以阈值为 0.5 来计算的,那我们就可以简单的认为预测的欺诈概率大于0.5就算欺诈了吗?还是说如果他的潜在欺诈概率只要超过 20% 就已经算为欺诈了呢?

    39440

    教你识别金融红包类欺诈

    金融欺诈:是指骗子通过虚假办理信贷类金融产品或以高额回报理财产品为诱饵,骗取用户钱财的欺诈行为。 案例讲解: 金融欺诈常见作恶手段: 1、以股票、彩票内部消息为诱饵,声称能准确预测股票的涨跌来稳定获利,从而诱骗用户参与投资并交纳各种会员费用。 3、以代开、提额、套现各种信用金融产品为名,通过收取手续费及其他费用的名目,实施二次或多次欺诈; ? 红包欺诈常见作恶手段: 骗子利用网络红包生成器软件P图或者用小号冒充多名用户参与红包多倍返利活动。 举报方法: 方法①点击聊天框右上角头像—点击页面下方【举报】按钮-【该帐号存在欺诈骗钱行为】-【金融欺诈/红包欺诈】 ? 方法②点击聊天框用户头像—资料页右上角【更多】—【举报】-【该帐号存在欺诈骗钱行为】-【金融欺诈/红包欺诈】 ?

    27010

    基于机器学习的欺诈研究

    三、 基于机器学习的欺诈攻防案例 机器学习技术虽然在欺诈解决方案中发挥着重要作用,但另一方面,机器学习技术也可以被不法分子用来进行欺诈。 USENIX 2020收录的《Boxer: Preventing fraud byscanning credit cards 》一文,就对利用虚假信用卡信息,对金融支付类应用进行欺诈的攻防进行了系统研究 构建跨行业的欺诈技术生态,促进行业合作,整合优势资源,对于欺诈技术的发展将能起到显著的推动作用。 最后,机器学习不光能在欺诈中起到重要作用,也有可能成为不法分子进行欺诈的工具,并有能力对现有防御方案造成巨大威胁。因此,欺诈研究工作不光需要关注机器学习解决方案,也应该关注基于机器学习的欺诈手段。 从攻防的角度出发,是欺诈研究的重要课题。

    16630

    先知:人工智能助力Fintech欺诈

    本文内容节选自第六届全球软件案例研究峰会宜人贷数据科学家王婷分享的《先知:人工智能助力Fintech欺诈》实录,本文主要分享互联网金融欺诈,通过人工智能与人工调查的结合,实现智能欺诈的效率和准确性提升 【内容简介】作为中国金融科技第一股,宜人贷发布科技能力共享平台(Yirendai Enabling Platform,简称YEP共享平台),旨在以强大的金融数据能力、欺诈智能和线上客户获取服务能力,为金融科技企业提供更强大的信用评估 先知是基于宜人贷的欺诈云平台,面向Fintech全行业的一种欺诈解决方案,帮助Fintech企业解决在信贷申请欺诈金融中介识别、团伙监控/预警上面临的一系列问题。 基于行为数据的欺诈模型在我们的欺诈体系中也是很重要的一环。 作为宜人贷YEP对外输出的重要组成部分,先知体现了宜人贷在金融科技领域的智能欺诈能力,以人工智能+人工调查的结合模式,2017年已挽回潜在欺诈损失2亿元以上。

    1.1K110

    针对移动支付的道德欺诈系统

    团队对在移动设备上的程序中运行现有欺诈security challenges Boxer 进行了大规模测量研究后发现,虽然 Boxer 总体上运行良好,但它无法在以低于每秒一帧(FPS)的速度运行的设备上进行有效扫描 团队对在移动设备上的程序中运行现有欺诈security challenges Boxer   进行了大规模测量研究后发现,虽然 Boxer 总体上运行良好,但它无法在以低于每秒一帧(FPS)的速度运行的设备上进行有效扫描 于是团队设计了 Daredevil,一种新的欺诈系统,用于扫描支付卡,并在各种性能的移动设备和硬件配置中都能很好地工作。 与 Boxer 相比,Daredevil将以低于1 FPS的速度运行的设备数量减少了一个数量级,为打击欺诈行为提供了一个更公平的系统。 Daredevil错误地将7次扫描标记为欺诈,假阳性率为2.2%。错误均匀地分布在所有设备上,这体现了Daredevil的公平性。

    13440

    图数据库·业务总结·欺诈

    比如银行和公安经侦监控资金账户,当有一段时间内有大量资金流动并集中到某个账户的时候很可能是非法集资,系统触发预警(图7) 一般欺诈 ? 欺诈判断1:多个用户使用相同的地址、银行卡、身份证、电话等其他信息 电子商务的欺诈 ? 欺诈判断2:一个ip或Cookies 服务于多个信用卡或用户。 欺诈判断3:信息不一致。

    51330

    天御欺诈服务,让「天下无贼」

    互联网理财 P2P 金融 恶意目的骗贷、骗保、洗钱? 企业面临欺诈风险? 用我们的沉淀,给企业足够的“安全感” 腾讯云发布天御欺诈服务 随着互联网理财、P2P 金融的快速发展,带有恶意目的的骗贷,骗保、洗钱等恶意行为也形成了新的地下产业,这些黑色产业链给企业品牌带来了严重的经济损失 基于企业的痛点,腾讯云通过大数据分析能力,以及在对抗社交诈骗、电商刷单、保驾互联网银行和支付业务安全上累积的实战经验,发布天御欺诈服务,解决企业被欺诈的风险,让企业专注于业务的发展。 天御欺诈服务,基于腾讯管家平台和社交生态所积累的海量恶意数据,以及通过行为识别,画像计算等能力,精准识别出恶意用户,并通过服务的方式通知企业客户进行跟踪标记和拦截等处理方式。 ? 一网打尽以上威胁与风险,为你们做到「天下无贼」 如何获取腾讯云天御欺诈服务 客户可通过腾讯云工单系统提交工单咨询该服务或者拨打95716咨询

    2.7K70

    【独家编译】美国欺诈服务商Precognitive获百万美元种子轮融资 欺诈是新的风口?

    数据猿导读 今年年内,国内外数家欺诈服务提供商获得了数百万至数千万美元融资,欺诈已经成为大数据领域一个新的热门话题。 ? Precognitive通过分析用户与在线服务之间的交互行为数据,向客户提供欺诈预警。 其创始人Sam Bouso表示,目前Precognitive拥有三种不同的欺诈技术以适应不同和客户与场景。 他说:“欺诈服务有大量数据可供挖掘,大多数解决方案都专注于在交易中进行欺诈,但我们实际上能够通过多次访问监控设备和用户活动,从而在欺诈发生之前为客户提供预警。” 近年来,随着互联网金融的迅速壮大,各类类信贷产品的消费群体范围日益扩大。无论是传统金融机构,还是新兴互联网金融机构,都要面临如何更高效的筛选客户和预防欺诈行为的挑战。 这种需求也催生了巨大的金融欺诈服务市场。

    41270

    相关产品

    • 腾讯知识图谱

      腾讯知识图谱

      腾讯知识图谱是一个集成图数据库、图计算引擎和图可视化分析的一站式平台。支持抽取和融合异构数据,支持千亿级节点关系的存储和计算,支持规则匹配、机器学习、图嵌入等图数据挖掘算法,拥有丰富的图数据渲染和展现的可视化方案……

    相关资讯

    热门标签

    扫码关注云+社区

    领取腾讯云代金券