首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

金融科技&大数据产品推荐:金鹏汽车金融大数据风控系统

金鹏汽车金融大数据风控系统主要基于大数据科技、决策树规则引擎、深度学习等多项核心技术,有效针对新车贷款、二手车贷款等业务,提高风控效率。...的产品投递 1、产品名称 金鹏汽车金融大数据风控系统 2、所属分类 消费金融 金融科技·风控、征信、反欺诈、智能定价 3、产品介绍 金鹏汽车金融大数据风控系统一站式完成车贷审批流程。...6、产品优势 金鹏汽车金融大数据风控系统风控能力行业领先。秒速审批,一站式低成本。精准风控,近100%覆盖权威有效。自动定价,自动决策引擎定价,差异化匹配资质,高体验。...7、服务客户/使用人数 主要使用者:机构的汽车消费金融业务风控审核人员。 目标客户:汽车消费金融公司25家以上,融资租赁公司70家以上,其它有汽车信贷业务的公司千家以上。...金鹏汽车金融风控系统一站式解决预审批风控难题,基于大数据科技、决策树规则引擎、深度学习等多项核心技术,提高车贷行业风控能力,给予更准确、更效率、更便捷的风控体验。

2.1K70

【金融数据】消费金融:大数据风控那点事?

大数据风控同传统风控在本质上没有区别,主要区别在于风控模型数据输入的纬度和数据关联性分析。...风险评估过程中,如果数据纬度不全,高相关数据没有被考虑进来,对风控模型是一个大的风险。信用风险评估模型缺少了重要风险因素的输入,其评估结果的偏离度就会较大,评估结果失效的可能性就很大。...相对于传统金融来讲,互联金融面对的客户风险较高,其风控面临的挑战更大,对数据风控对要求就会更高。 三、互联网金融行业的风控挑战 中国的互联网金融企业愿意从美国挖一些风控人才来提高自身风控水平。...大数据风控的优势: 1、用户行为数据成为风控数据 风控最好的数据还是金融数据,例如年龄、收入、职业、学历、资产、负债等信用数据,这些数据同信用相关度高,可以反映用户的还款能力和还款意愿,这些数据因子在风控模型中必不可少...大数据风控的劣势: 还是要强调一下,信用风险评估最好的数据还是金融数据,就是人行征信系统里的数据,大数据风控只是一个补充,不能够完全替代传统的信贷风险管理。

3.8K51
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    金融风控数据管理——海量金融数据离线监控方法

    作者:housecheng  腾讯WXG工程师 |导语  解决金融风控数据监控“开发门槛高”“重复工作多”的痛点,实现PSI计算性能十倍速提升。...背景 在金融业务上,质量和稳定是生命线,我们需要对所有已经上线的风控要素,如策略、模型、标签、特征等构建监控。...在过去,我们部署监控的方式为: 风控要素负责同学在要素上线前,通过spark\sql完成对监控指标的运算并例行化; 将监控指标运算结果出库mysql\tbase,用于指标的展示和告警; 告警系统轮询指标是否异常...,如多数风控要素都涉及PSI计算,只是告警阈值不一样;指标出库、配置告警等同样是重复相似操作。...小结 针对金融风控要素监控的“开发门槛高”“重复工作多”等问题,本文提出了“统一监控计算与检查工具”这一解决方案,本文详细论述了该方案TaskMaker、 Calculator、 Checker等各个模块的设计实现

    2.7K10

    互联网金融风控中的数据科学

    宜人贷数据部数据科学家王婷根据自己在行业的实践经验和专业知识,从三方面来分享互联网金融风控中的数据科学。 ? 背景 有了互联网之后,大家可以在线上进行理财借款。...但在国内没有权威的征信机构来提供这些数据,对于互联网金融公司来说,收集这样的数据难度非常大。而且传统评分卡的有效特征挖掘非常困难。 欺诈风险:欺诈风险包含了伪冒申请和欺诈交易。...知识图谱在金融风控中的应用场景 互联网金融中的风控是一种机器学习的过程 互联网金融中风控和机器学习一样要定义Y目标和X变量。 Y目标和普通机器学习Y目标的区别就在于正负比例非常悬殊。...风控建模中的数据科学 ? 在整个风控中,它是一个标准的机器学习流程。除了样本和数据与普通互联网机器学习不一样之外,其它基本都是一致的。...FinGraph是线上风险控统中关键的一环 ? 总结:数据科学在互联网金融风控中发扬 图挖掘技术可以把风控工作,从局部考量提升到全局考量。

    2.7K50

    2017年大数据风控报告

    金融科技下的批量化获客、作业有效降低了成本。二是通过大数据、云计算等手段,在风险防范、风险管控方面实现了线上化和批量化。 其中,大数据技术解决了消费金融乃至小微金融领域风控的效率瓶颈。...目前,有能力推动大数据风控的主要为国有大行、股份制银行等大型银行,以及部分城商行等。互联网巨头、三大运营商等由于掌握了庞大的个人数据,也开始加入到这一市场中来。...从国内金融机构应用大数据的情况看,主要将大数据应用在客户画像领域,包括风险管控、运营优化、业务创新、优化营销策略等。...“白名单”主动预授信 在消费金融中,银行、互联网金融等机构开始采用风控前置的白名单邀请制,商业银行将主动授信用于实际业务,这是对以往被动授信模式的颠覆。...就国内商业银行而言,将风险评分等技术手段引入信用贷款风控模型,是一些银行信用贷款业务爆发、不良下降的核心原因。

    2K00

    金融科技|风控建模技术方案

    风控建模的技术方案 1 逻辑回归模型 在银行的传统评分卡建模中,应用的也是逻辑回归模型。逻辑回归本质上是一个线性分类模型。...一方面,深度学习模型都有很高的模型复杂度,需要大规模的样本数据,而风控领域要获取大规模的样本数据的成本极高。...另一方面,如前所述风控特征数据的维度间是平行的,不存在邻近关系,较难利用CNN和RNN这样具有较好物理含义的深度学习模型,而简单的堆砌若干个全连接层在高维特征数据上是很难得到一个稳定的模型。...总之,金融风控模型是一个既传统又新鲜的技术问题。银行的风控模型已经随着银行业的发展应用了数十年。...而互联网金融面临的如何组合大量的弱特征数据对于用户的逾期行为给一个准确的预测,是一个新出现的技术课题,技术方案也在快速的迭代演进中。

    1.8K30

    金融科技&大数据产品推荐: 数美金融风控—构建立体的全业务流程风控体系

    的产品投递 1、产品名称 数美全业务流程风控体系 2、所属分类 金融科技 · 风控、反欺诈 3、产品介绍 数美依托强大的AI技术与海量基础数据,为金融机构提供覆盖全业务流程的完整风控解决方案。...信贷风控云也提供了一个可视化的规则引擎,该规则引擎集成数美所有的风控数据,并支持客户自定义的风控数据。客户可以利用这些数据,在web控制台灵活地配置各种风控规则策略。...可信度和所有的风险判断结果都会反馈给客户的风控专家团队。 信贷风控云集成了数美所有的风控数据维度,并且支持客户自定义数据,将自定义数据与数美数据联合使用。...这让金融企业面临着来自市场与黑灰产的双重挑战,并因此催生了对新金融风控的需求。 数美将企业沉淀数据与自身数据库相结合,一站式的帮助企业解决欺诈问题。...2) 助力金融企业服务,促进普惠金融发展 数美一直专注于大数据反欺诈领域的技术创新,通过多种反欺诈技术识别欺诈风险,借助多维度数据识别信用风险,利用多重的策略模型提升风控效果,进而打造立体的防御体系,为金融客户提供持续

    2.6K30

    金融风控评分卡建模全流程!

    一、评分卡的分类 在金融风控领域,无人不晓的应该是评分卡(scorecard), 无论信用卡还是贷款,都有”前中后“三个阶段。...根据风控时间点的”前中后”,一般风评分卡可以分为下面三类: A卡(Application score card)。目的在于预测申请时(申请信用卡、申请贷款)对申请人进行量化评估。...我们最熟悉的,莫过于支付宝的芝麻信用分,又或者知乎盐值(虽然知乎盐值不是评估金融风险的,但也算是评分卡的应用之一) 但是,随着信贷业务规模不断扩大,对风控工作准确率的要求也逐渐提升。...我们用的数据是每个搞风控的人都熟悉的“Give Me Some Credit"数据集。本节会按照列出的六个步骤带你领略评分卡实际构建过程。 数据集地址:https://link.zhihu.com/?...4.2 样本选取 对于金融机构内部,我们需要将连续的数据分为训练集和测试集。

    9.5K61

    【应用】揭秘互联网金融的大数据风控

    大数据能够进行数据变现的商业模式目前就是两个,一个是精准营销,典型的场景是商品推荐和精准广告投放,另外一个是大数据风控,典型的场景是互联网金融的大数据风控。...金融的本质是风险管理,风控是所有金融业务的核心。典型的金融借贷业务例如抵押贷款、消费贷款、P2P、供应链金融、以及票据融资都需要数据风控识别欺诈用户及评估用户信用等级。...传统金融的风控主要利用了信用属性强大的金融数据,一般采用20个纬度左右的数据,利用评分来识别客户的还款能力和还款意愿。...其他同信用相关的数据还有区域、产品、理财方式、行业、缴款方式、缴款记录、金额、时间、频率等 互联网金融的大数据风控并不是完全改变传统风控,实际是丰富传统风控的数据纬度。...八、参考借款人社会属性和行为来评估信用 参考过去互联网金融风控的经验发现,拥有伴侣和子女的借款人,其贷款违约率较低;年龄大的人比年龄低的人贷款违约率要高,其中50岁左右的贷款人违约率最高,30岁左右的人违约率最低

    1.4K40

    蚂蚁金服风控总监王黎强:智能风控助力新金融

    数据猿报道,2017年10月25日,由 数据猿 联合《清华金融评论》共同主办的“2017金融科技价值峰会——数据驱动金融商业裂变”在北京隆重召开。...本文为数据猿现场直播“蚂蚁金服风控总监王黎强:智能风控助力新金融”的发言实录。...但是事实上这个体系还不够完善,因为风控不仅仅是一个冷冰冰的数据和机器,更多的还要看到客户体验。我们既要做到保障整个安全风控,还要兼顾到用户的体验。...因为我们所有的交易是在线上发生的,与传统金融机构的区别在于,我们所有的风险也都是暴露在线上的。通过多年的努力,我们构建了一套全方位立体化智能的风控体系,这里我可以分享几个数据: 第一个数据是一百毫秒。...举个例子,我们整个风控体系就像人的骨骼,数据是人的血肉,AI是人的大脑,三者有机结合在一起,构成了我们整个智能风控体系的框架。然后高效实时的运作起来,是蚂蚁金服智能风控体系的第一个优势。

    2.8K61

    数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(下篇)xgbootslightgbmCatboost等模型--模型融合:stacking、blend

    数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(下篇)xgboots/lightgbm/Catboost等模型--模型融合:stacking、blending 相关文章: 数据挖掘实践(金融风控...):金融风控之贷款违约预测挑战赛(上篇) 数据挖掘机器学习专栏 4.建模与调参 项目链接以及码源见文末 4.1 模型对比与性能评估 4.1.1 逻辑回归 优点 训练速度较快,分类的时候,计算量仅仅只和特征的数目相关...928000128.00 MB Memory usage after optimization is: 165006456.00 MB Decreased by 82.2% 4.2.1 简单建模 Tips1:金融风控的实际项目多涉及到信用评分...为了防止过拟合,将数据分为两部分d1、d2,使用d1的数据作为训练集,d2数据作为测试集。预测得到的数据作为新特征使用d2的数据作为训练集结合新特征,预测测试集结果。...数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(上篇) 数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(下篇)

    4K51

    数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(上篇)xgbootslightgbmCatboost等模型--模型融合:stacking、blend

    数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(上篇)xgboots/lightgbm/Catboost等模型--模型融合:stacking、blending 1.赛题简介 赛题以金融风控中的个人信贷为背景...通过这道赛题来引导大家了解金融风控中的一些业务背景,解决实际问题,帮助竞赛新人进行自我练习、自我提高。...评分卡是金融风控中常用的一种对于用户信用进行刻画的手段哦!...在特征工程中比赛和具体的应用还是有所不同的,在实际的金融风控评分卡制作过程中,由于强调特征的可解释性,特征分箱尤其重要。...项目链接以及码源 数据挖掘专栏 数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(上篇) 数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(下篇)

    5.2K111

    金融科技|普惠金融下的智能信贷风控

    可以说,利用大数据、人工智能等建设智能风控能力,已成为互联网金融时代银行提升核心竞争力的重要举措。...在当前时代背景下,普惠金融下的信贷风控呈现如下几个发展趋势: (一)线上化 通过互联网信息技术可以从线上方便、快捷地获取客户海量数据信息,并且通过智能风控模型可以自动快速处理客户海量数据。...(五)建设人才队伍,完善风控体系 人才队伍是建设智能风控体系的核心力量,同时也是金融机构风控的核心竞争力。...从长远来看,智能风控已不再仅仅是数据、模型和系统三者的配合形成的智能,它需要更多地与普惠金融的业务创新和管理模式变革配合起来。...只有将智能风控放在商业银行普惠金融经营发展的大环境中,才能真正处理好普惠金融中传统风控和智能风控的关系,综合评估和运用两者的优势,以一种更加平稳、循序渐进的方式推动风控智能化的平稳转型。

    2.7K10

    供应链金融及产业风控

    在政府发布的相关政策中,不少都提及了供应链金融。2月19日,工信部发布了关于运用新一代信息技术来支撑服务和疫情防控的通知,其中第11条就写到了要运用基于生产数据的供应链金融来保障企业的复产复工。...从腾讯云出发,产业链金融其实是服务产业互联网化的一个最好的切入点。从目前来看,整个供应链金融市场的空间其实是非常大的。...简单来看,供应链金融有三个基础模式,但是大的核心逻辑还是会围绕一个核心企业和使用过它的上下游供应商和经销商。...很明显核心企业的平台在此类场景的配合、资产的把控和风控的能力上具有一定的优势。 往深处讲,再一个就是金融机构。金融机构有更多的供给层面的资金,可以形成快速有效低成本的供给,甚至还具有一定的风控能力。...---- 在后续课程中我们会继续为大家介绍 腾讯云对供应链金融科技解决方案、产业风控的相关内容 感兴趣的小伙伴可以点击“阅读原文”观看完整视频噢!

    2.1K20

    供应链金融及产业风控

    在政府发布的相关政策中,不少都提及了供应链金融。2月19日,工信部发布了关于运用新一代信息技术来支撑服务和疫情防控的通知,其中第11条就写到了要运用基于生产数据的供应链金融来保障企业的复产复工。...从腾讯云出发,产业链金融其实是服务产业互联网化的一个最好的切入点。从目前来看,整个供应链金融市场的空间其实是非常大的。...这只是一个基础的模式,在产业链金融的逻辑下,它的模式可以更加的丰富多样,比如说金融机构可以通过产业数据的方式来校验客户数据的真实性。...很明显核心企业的平台在此类场景的配合、资产的把控和风控的能力上具有一定的优势。 往深处讲,再一个就是金融机构。金融机构有更多的供给层面的资金,可以形成快速有效低成本的供给,甚至还具有一定的风控能力。...第三是金融科技平台,金融科技平台的最大优势在于线上化的操作和大数据的集成,以及基于数据进行的信息化的处理。另外仓储企业的话呢,因为它适用于特定场景,所以可能用到的机会不是很多。

    5.8K01

    ​金融风控的护航员——聊聊ERNIE在度小满用户风控的应用

    这意味着金融行业的风控需求异常迫切。面对更加下沉的客户群体、更加复杂的用户信息,既需要保证业务安全合规,也需要把控风控尺度和客户体验之间的平衡。 那么现在的金融机构是如何做这些的呢?...传统金融机构里会请金融风控师、审核员等对借贷资质进行人工审核,但该工作对相关从业人员的要求极高,既要有相关的背景知识能够对客户的资信状况做全面了解,又要求严谨认真,有独立的判断能力。...另外,传统的风控建模技术是基于小样本的监督学习,依赖于特征挖掘,需要耗费大量人力且依赖个人经验。同时,对于小样本的文本类数据处理往往缺乏对上下文的理解,无法提取其重点,导致对用户的理解出现偏差。...在度小满用户风控场景中,通过ERNIE对用户行为信息进行语义层面深度建模,定制化产出一个用户风控ERNIE模型。...利用ERNIE模型的长文本建模能力和预训练语义知识,结合小规模用户行为文本和用户风控标签的标注数据进行ERNIE精细Fine-tune,在训练2轮左右的时间内即可完成用户风控模型的收敛,而传统模型动辄需要训练

    1.9K10

    大咖实战分享 | 金融风控行业的联邦建模案例分享

    FATE是全球首个工业级的联邦学习开源框架,旨在从技术维度出发,在数据间彼此孤立、同时被不同组织所拥有且并不能被轻易地聚合在一起的环境下,联合构建机器学习模型。...对此,FATE开源社区继“月度之星”、“经典问答”等活动后,又特别推出了“大咖实战分享”活动,以帮助大家解决FATE实际应用问题。...7月15日晚7点,我们邀请到京东科技的闫玉成老师,为我们分享金融风控行业的联邦建模案例。...分享嘉宾 京东科技 闫玉成 算法工程师,从事风控及联邦学习领域的研究和实践 参与方式 【入群看直播】欢迎加入FATE联邦学习官方交流群,本群主要为联邦学习爱好者、相关专业人士提供交流平台,可与专家互动

    66310

    【案例】京东金融——消费金融,一场未来大数据风控的盛宴

    在国家拉动消费的战略背景下,各地方政府相继出台扶持消费金融的优惠政策,一方面P2P、资产证券化等模式丰富了非银企业的资金来源,另一方面国内大数据风控的崛起,使其成为促进消费金融发展的有利条件,更多传统金融机构...随着市场的不断扩大,京东金融的风险也骤然积聚,京东金融副总裁许凌这样评价,“我们的团队需要更专注地做风控,同时我们还要控制不良率”。...双方对风控、征信、大数据等领域拥有一致的思考与目标,希望打破传统的封闭环境,实现资源的共享与优势的互补,充分释放各自的价值,为用户提供新型消费金融体验。...这和京东金融的风控理念达成一致。 如何实时获取用户信贷信息,是亿美要帮助京东金融解决的主要问题。...使用效果 京东金融与亿美软通的持续合作,双方在各自领域均有更多的收获,通过亿美的大数据风控引擎,京东金融其数据维度得到更好的补充,尤其在用户行为方面数据的深度挖据与应用方面,使京东金融全面的了解客户个人画像

    3.3K60

    【ArchSummit干货分享】个推大数据金融风控算法实践

    本文将围绕大数据风控,结合个推实践,介绍金融风控机器学习的基本流程、算法实践和产品化建设等内容。 ? ?...风控流程 & 多维度特征 大数据风控的内容 数据是风控的核心要素,大数据风控实际上就是对数据的处理、建模和应用的过程。大数据风控的流程主要分为四个阶段:数据获取、数据分析、数据建模、风控产品应用。...基本属性、资产、金融、行为偏好、社会属性、消费偏好、风险和稳定性构成了个推金融数据的八大维度;个推利用数据的八大维度,逾350种特征进行模型构建,并将其应用于金融风控各环节。...金融风控机器学习的基本流程 整个风控建模流程,在个推大数据平台上完成。...风控场景机器学习的算法实践 利用上述多维度特征和建模能力,增能于贷前、贷中和贷后全流程:拉、选、评、管、催五大环节。 ?

    98130
    领券