实现批处理的技术许许多多,从各种关系型数据库的sql处理,到大数据领域的MapReduce,Hive,Spark等等。这些都是处理有限数据流的经典方式。...这两个 API 都是批处理和流处理统一的 API,这意味着在无边界的实时数据流和有边界的历史记录数据流上,关系型 API 会以相同的语义执行查询,并产生相同的结果。...Table API / SQL 正在以流批统一的方式成为分析型用例的主要 API。 DataStream API 是数据驱动应用程序和数据管道的主要API。...相反,MapReduce、Tez 和 Spark 是基于批的,这意味着数据在通过网络传输之前必须先被写入磁盘。该测试说明,在使用Flink 时,系统空闲时间和磁盘访问操作更少。...因此,Flink 可以用同一个数据处理框架来处理无限数据流和有限数据流,并且不会牺牲性能。
Flink如何做到流批一体 流批一体的理念 2020年,阿里巴巴实时计算团队提出“流批一体”的理念,期望依托Flink框架解决企业数据分析的3个核心问题,理念中包含三个着力点,分别是一套班子、一套系统、...一套班子:统一开发人员角色,现阶段企业数据分析有两个团队,一个团队负责实时开发,一个团队负责离线开发,在流批一体的理念中,期望促进两个团队的融合。...一套系统:统一数据处理技术,不管实时开发,还是离线开发都是用Flink框架进行,如非必要,尽可能少用其它系统。...流批一体的理念即使用同一套 API、同一套开发范式来实现大数据的流计算和批计算,进而保证处理过程与结果的一致性。...Apache Flink主要从以下模块来实流批一体化: 1.SQL层:支持bound和unbound数据集的处理; 2.DataStream API层统一,批和流都可以使用DataStream ApI来开发
Flink使用HiveCatalog可以通过批或者流的方式来处理Hive中的表。...这就意味着Flink既可以作为Hive的一个批处理引擎,也可以通过流处理的方式来读写Hive中的表,从而为实时数仓的应用和流批一体的落地实践奠定了坚实的基础。...值得注意的是,当以流的方式读取Hive表时,该参数的默认值是1m,即1分钟。当temporal join时,默认的值是60m,即1小时。...Temporal Join最新分区 对于一张随着时间变化的Hive分区表,Flink可以读取该表的数据作为一个无界流。...在实际应用中,通常有将实时数据流与 Hive 维表 join 来构造宽表的需求,Flink提供了Hive维表JOIN,可以简化用户使用的复杂度。
本文介绍了 SparkSQL 和 Flink 对于批流支持的特性以及批流一体化支持框架的难点。在介绍批流一体化实现的同时,重点分析了基于普元 SparkSQL-Flow 框架对批流支持的一种实现方式。...目录: 1.SparkSQL 和 Flink 对于批流支持的特性介绍 2.基于SparkSQL-Flow的批量分析框架 3.基于SparkStreaming SQL模式的流式处理支持 4.对于批流一体化...四、对于批流一体化ETL的思考 Kettle ETL 工具 提到 ETL 不得不提 Kettle。批、流、数据源、多样性 大多数设计的ETL工具在他面前都相形见绌。...理想中的批流一体ETL 具有如 Kettle 般的算子表达能力,又具有完全的大数据处理能力。...SparkSQL-Flow 是基于Spark架构,天生具有分布式、本地计算、完全SQL开发的批流一体化计算框架。
; 简述大数据架构发展 Lambda 架构 Lambda 架构是目前影响最深刻的大数据处理架构,它的核心思想是将不可变的数据以追加的方式并行写到批和流处理系统内,随后将相同的计算逻辑分别在流和批系统中实现...,并且在查询阶段合并流和批的计算视图并展示给用户。...流批融合的 Lambda 架构 针对 Lambda 架构的问题3,计算逻辑需要分别在流批框架中实现和运行的问题,不少计算引擎已经开始往流批统一的方向去发展,例如 Spark 和 Flink,从而简化lambda...图4 Kafka + Flink + ElasticSearch的混合分析系统 Lambda plus:Tablestore + Blink 流批一体处理框架 Lambda plus 是基于 Tablestore...表格存储支持用户 tp 系统低延迟读写更新,同时也提供了索引功能 ad-hoc 查询分析,数据利用率高,容量型表格存储实例也可以保证数据存储成本可控; 计算上,Lambda plus 利用 Blink 流批一体计算引擎
❝每家数字化企业在目前遇到流批一体概念的时候,都会对这个概念抱有一些疑问,到底什么是流批一体?这个概念的来源?这个概念能为用户、开发人员以及企业带来什么样的好处?跟随着博主的理解和脑洞出发吧。...❞ 前言 到底什么是流批一体? 批的来源?流的来源? 为什么要做流批一体? 从 数据开发的现状出发 探索理想中的流批一体能力支持 最终到数仓落地 go!!! ? ? ? ? ? ? ?...n 年前的引擎能力(hive 等) 对文件、批量数据处理支持很友好 数据多是小时、天级别延迟 结论:批是在批式存储、处理引擎能力支持的角度提出的 ? ?...博主理解的流批一体更多的是站在平台能力支持的角度上 所以这里重点说明引擎 + 工具链上的期望 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?...更多 Flink 实时大数据分析相关技术博文,视频。后台回复 “flink” 获取。 ?
01 整体思考 提到流批一体,不得不提传统的大数据平台 —— Lambda 架构。...通过一套数据链路来同时满足流和批的数据处理需求是最理想的情况,即流批一体。此外我们认为流批一体还存在一些中间阶段,比如只实现计算的统一或者只实现存储的统一也是有重大意义的。...在流批一体技术落地的过程中,面临的挑战可以总结为以下 4 个方面: 首先是数据实时性。如何把端到端的数据时延降低到秒级别是一个很大的挑战,因为它同时涉及到计算引擎及存储技术。...02 技术方案及优化 流批一体是以 FlinkSQL 为核心载体,所以我们对于 FlinkSQL 的底层能力也做了一些优化,主要分为维表优化、join 优化、window 优化和 Iceberg connector...3.1 案例一 实时通用数据层 RDDM 流批一体化的建设。
摘要:本文介绍了某零售企业用户基于 Dlink + FlinkSQL 构建批流一体数据平台的实践,主要为部署的分享。...地址 https://github.com/DataLinkDC/dlink 欢迎大家关注 Dlink 的发展~ 一、前言 由于公司需求,最近调研了很多的开源项目,最终发现 Dlink 在建立批流一体的数据平台上更满足需求...3.local 不熟悉的话慎用,并不要执行流任务。 三、集群中心 集群中心配置包括: 集群实例 集群配置其中集群实例适用场景为standalone和yarn session以及k8s session。
数据湖可以汇集不同数据源(结构化、非结构化,离线批数据、实时流数据)和不同计算引擎(流计算引擎、批处理引擎,交互式分析引擎、机器学习引擎),是未来大数据的发展趋势,目前Hudi、Iceberg和DeltaLake...笔者基于对开源数据湖组件Hudi的研究和理解,思考在Iceberg、DeltaLake和Hudi等开源数据湖组件之上构建批流一体近实时数仓的可能性和思路。...03 批流一体 按照上述思路建设的近实时数仓同时还实现了批流一体:批量任务和流任务存储统一(通过Hudi/Iceberg/DeltaLake等湖组件存储在HDFS上)、计算统一(Flink/Spark作业...)、开发统一(Flink/Spark)、业务逻辑统一(同一套逻辑分为批和流)。...业务需求使用同一套加工逻辑开发代码,按照加工时效的粒度分为批和流两类加工,在统一的数据来源上在同一套计算环境分别进行批量和流式数据加工,四方面的统一保证批任务和流任务的数据结果一致性。
平台在流批一体上的建设和演进 Tips:点击「阅读原文」免费领取 5000CU*小时 Flink 云资源 01 流批一体在 Shopee 的应用场景 首先,先来了解一下 Flink 在 Shopee...上面介绍的都是 Shopee 内部流批一体应用场景的一些例子,我们内部还有很多团队也正在尝试 Flink 的流批一体,未来会使用的更广泛。...03 与离线生态的完全集成 在流批一体落地的过程中,用户最关心的就是技术架构的改动成本和潜在风险。作为 Flink 平台,面临的一个很重要的挑战就是如何兼容好用户已经广泛应用的离线批处理能力。...04 平台在流批一体上的建设和演进 最后我想介绍一下我们 Flink 平台在流批一体上的建设和演进。其实在上面介绍中,已经展示了不少平台的功能。...我们会加大 Flink 批任务的推广,探索更多流批一体的业务场景。同时跟社区一起,在合适的场景下,加速用户向 SQL 和流批一体的转型。
一、关于流批一体数据仓库 流批一体是一种架构思想,这种思想说的是同一个业务,使用同一个sql逻辑,在既可以满足流处理计算同时也可以满足批处理任务的计算。...二、数栈在流批一体数仓上的演进 随着客户体量增大,客户需求逐步增加,面对PB级别的批数据和流数据的处理需求,数栈技术团队面临越来越多的挑战,在这个过程中逐步完善了数栈数仓架构体系。...为应对这种变化,数栈技术团队结合当时主流大数据处理技术,在原有的HIVE数仓上,增加了当时最先进的流批一体计算引擎Spark来加快离线计算性能。...三、数栈流批一体核心引擎FlinkX技术解读 FlinkX是一款基于Flink的流批统一的数据同步以及SQL计算工具。...FlinkX在数栈中实现流批一体流程图 3. 数栈流批一体在数仓上的实践 下面结合架构图场景讲述下数栈流批一体的做法。
长期以来,我们一直被告知批处理和流(有界和无界系统)是正交技术——一种参考架构,其中流媒体为数据湖提供养料,仅此而已。...其中批处理用于检查流的有效性(lambda),或者我们需要将所有内容都考虑为流(kappa)。 但在战壕中,作为数据从业者,我们想要更多。...我们希望能够以简单的方式轻松整合现有企业数据源和高速/低延迟数据流。我们需要灵活地处理批处理 API 和流 API 以及无缝读取和写入它们的连接性。...从 CSA 1.4 开始,SSB 允许运行查询以连接和丰富来自有界和无界源的流。SSB 可以从 Kudu、Hive 和 JDBC 源加入以丰富流。随着时间的推移,我们将继续添加更多有界的源和接收器。...分布式实时数据仓库——通过物化视图将流数据作为事实与批量数据作为维度进行连接。例如,执行丰富的点击流分析,或将传感器数据与历史测量值结合起来。
- 随着大数据领域不断发展,企业对于业务场景的诉求也从离线的满足转到高实时性的要求,“t+0”形式呈现业务数据已是刚需。
架构优化升级 基于以上问题,我们在进行大量技术调研选型及POC之后,我们主要做了如下2部分大的架构优化升级。...2.2 Apache Hudi 我们需要有一种能够兼容S3存储之后,既支持大量数据的批处理又支持增加数据的流处理的数据湖解决方案。...从而实现流批一体架构而不是典型的Lambda架构。...hoodie.parquet.small.file.limit hoodie.merge.allow.duplicate.on.inserts 其中:hoodie.combine.before.insert 决定是否对同一批次的数据按...总结 我司基于Hudi实现流批一体数据湖架构上线生产环境已有半年多时间,在引入Hudi之后我们在以下各个方面都带来了一定收益: •成本: 引入Hudi数据湖方案之后,实现了S3数据增量查询和增量更新删除
流计算与批计算对比 数据时效性 流式计算实时、低延迟,流式计算适合以“t+0”的形式呈现业务数据; 批计算非实时、高延迟,批计算适合以“t+1”的形式呈现业务数据; 数据特征 流式计算数据一般是动态数据...,数据是随时产生的; 批计算数据一般是静态数据,数据事先已经存储在各种介质中。...批计算应用在离线计算场景,如:数据分析、离线报表等。 运行方式 流式计算的任务是阻塞式的,一直持续运行中。 批计算的任务是一次性完成即结束。...,然后将消息流与多个维表数据进行各种关联查询,最后输出融合查询结果集到目标源,常用在将多个维表数据与实时消息流关联后转换成一个大宽表的场景。...支持消息流数据传输过程中动态产生的数据与多种类型数据库之间的流计算查询。 融合查询语法遵循ANSI SQL标准。
通过 CBO 优化器、列式存储、和代码生成技术,Flink SQL 拥有非常高的查询效率。同时借助于 Flink runtime 良好的容错和扩展性,Flink SQL 可以轻松处理海量数据。...table/python/metrics.html 展望后续 在后续版本,易用性仍然是 Flink SQL 的核心主题,比如 schema 的易用性增强,Descriptor API 简化以及更丰富的流
由于Flink集成了批计算和流计算,因此可以使用Flink构建流批一体的系统架构,主要包含数据集成的流批一体架构、数仓架构的流批一体架构和数据湖的流批一体。...基于Flink流批一体整个数据集成的架构将不同。...在Flink流批一体架构的基础上,Flink CDC也是流批混合的,它可以先读取数据库全量数据同步到数仓中,然后自动切换到增量模式。...视频讲解如下:二、数仓架构的流批一体架构 &emsp目前主流数仓架构都是一套典型的离线数仓和一套新的实时数仓,但这两套技术栈是分开的。...用流批一体架构来解决,以上难题将极大降低,其优点如下:首先,Flink 是一套开发规范,不存在两套开发成本。一个开发团队,一套技术栈,就可以做所有的离线和实时业务统计的问题。
在降本增效的大背景下,我们针对结合计算引擎Flink与数据湖技术Iceberg建设流批一体实时湖仓做了较多的探索和实践,已经具备可落地可复制的经验。...流批一体实时湖仓建设实践在具体展开之前,从结果导向出发,先明确下我们期望流批一体最后实现的效果是什么。从大的方面来说,大数据技术要回答的两个问题是:(1)海量数据如何存储?(2)海量数据如何计算?...具体到流批一体,这里可以细分为存储和计算两个层面,我们可以按照以下步骤去确定目标:(1)存储层面流批一体,即通过一种统一的存储技术能在同一张表上同时支持流处理和批处理,以此达到“Single Source...对应到计算代码就是即使主要计算逻辑一致,分组字段中的“时间窗口”也是不同的,所以只能复用主要的计算逻辑,代码并不是完全相同(3)存储和计算层面流批一体,兼具上述两者的优点3.1 存储层面流批一体存储层面流批一体需要有满足上述需求的存储技术支持...3.2 计算层面流批一体对于计算层面流批一体的问题,上文提到希望寻找一个实现了Dataflow模型的计算引擎去统一处理批处理层和流处理层的数据计算,因此Flink就成为了最佳的技术选型。
支持消息流数据传输过程中动态产生的数据与多种类型数据库之间的流计算查询。融合查询语法遵循ANSI SQL标准。
领取专属 10元无门槛券
手把手带您无忧上云