展开

关键词

信用卡欺诈

最后一列Class,0为正常,1为欺诈 2、程序解读 2.1 读取文件 #! lambda x: 1 if x > 1.5 else 0) data['V21_'] = data.V21.map(lambda x: 1 if x > 0.6 else 0) print('每个单一属性的欺诈记录与整车记录的差异统计 :') print(data.describe()) print(data.sum()) 每个单一属性的欺诈记录与整车记录的差异统计: Time V1 print('欺诈记录的占比:') print(data.Normal.value_counts()) print() print(data.Fraud.value_counts()) pd.set_option ("display.max_columns",101) print(data.head()) 欺诈记录的占比: 1.0 284315 0.0 492 Name: Normal, dtype

37530

营销业务欺诈全流程

按照欺诈的人数来分可分为:个体欺诈和团伙欺诈; 按照欺诈的主体来可分为第一、第二、第三方欺诈; 按照欺诈的行为可分为:金融信贷欺诈、互联网业务欺诈和信用卡欺诈三大类。 按照欺诈的行为,大的方向上可分为:金融信贷欺诈、互联网业务欺诈和信用卡欺诈三大类,如果进一步 细分落到具体的场景上有:盗刷、薅羊毛、骗贷、套现、刷单、 刷好评等行为,根据不同的欺诈场景的应对方法是有所不同的 在此背景下,为避免营销资源浪费,在加强活动规则设计的同时,亟需运用技术手段搭建营销欺诈系统,以保护良好营销环境,提升营销效果。 4 欺诈客群分析: 在复杂的欺诈任务上,无法仅凭仅有的少数欺诈标签建立一个良好的欺诈模型(更何况标签质量参差不齐的),知己知彼百战不殆,这需要去了解业务知识、欺诈链,并采用更合适的技术手段来识别欺诈 现实中,羊毛党会结合第三、四类薅羊毛方式,并存在与平台、商家瓜分利益,发展趋势更具规模化、产业化,这个是营销欺诈的主要目标。

13550
  • 广告
    关闭

    什么是世界上最好的编程语言?丨云托管征文活动

    代金券、腾讯视频VIP、QQ音乐VIP、QB、公仔等奖励等你来拿!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    欺诈模型(数据不平衡)

    所以说欠采样需要在占比少的那一类的数据量比较大的时候使用(大型互联网公司与银行),毕竟一命抵一命... Random Over Sampling 随机过采样 ? 而且recall是以阈值为 0.5 来计算的,那我们就可以简单的认为预测的欺诈概率大于0.5就算欺诈了吗?还是说如果他的潜在欺诈概率只要超过 20% 就已经算为欺诈了呢?

    39740

    基于机器学习的欺诈研究

    三、 基于机器学习的欺诈攻防案例 机器学习技术虽然在欺诈解决方案中发挥着重要作用,但另一方面,机器学习技术也可以被不法分子用来进行欺诈。 构建跨行业的欺诈技术生态,促进行业合作,整合优势资源,对于欺诈技术的发展将能起到显著的推动作用。 最后,机器学习不光能在欺诈中起到重要作用,也有可能成为不法分子进行欺诈的工具,并有能力对现有防御方案造成巨大威胁。因此,欺诈研究工作不光需要关注机器学习解决方案,也应该关注基于机器学习的欺诈手段。 从攻防的角度出发,是欺诈研究的重要课题。 我们持续探索信息安全领域的前沿学术方向,从实践出发,结合公司资源和先进技术,实现概念级的原型系统,进而交付产品线孵化产品并创造巨大的经济价值。

    16730

    先知:人工智能助力Fintech欺诈

    本文内容节选自第六届全球软件案例研究峰会宜人贷数据科学家王婷分享的《先知:人工智能助力Fintech欺诈》实录,本文主要分享互联网金融欺诈,通过人工智能与人工调查的结合,实现智能欺诈的效率和准确性提升 先知是基于宜人贷的欺诈云平台,面向Fintech全行业的一种欺诈解决方案,帮助Fintech企业解决在信贷申请欺诈、金融中介识别、团伙监控/预警上面临的一系列问题。 、数据能力以及欺诈能力对外做平台化的输出。 在开发先知欺诈云平台之前,发现欺诈风险的时间周期会比较长,这会导致个别欺诈用户到放款甚至逾期后才被发现。 基于行为数据的欺诈模型在我们的欺诈体系中也是很重要的一环。

    1.1K110

    智能时代如何构建金融欺诈体系?

    在智能时代,每一个大数据公司都是数据时代的淘金者,而极光就是一家为大家提供淘金工具、矿场和原材料的数据服务公司。 他认为要在新形势下建立有效的互联网金融欺诈体系,关键是大数据+AI。 具体来讲,交叉认证、规制引擎、外部引擎、模型策略是构建欺诈决策体系的四种方法,常用的欺诈方法有逻辑回归、随机森林、神经元网络、统计分布异常检测、文本挖掘及模糊匹配、复杂网络分析等。 金融欺诈任重道远,苏建成认为在未来金融大数据风控会呈现出三大趋势:1、欺诈套路层出不穷,欺诈与其的对抗将长久存在;2、随着国家对个人信息保护力度的加强,大数据欺诈公司的数据来源会受到一定的影响;3 、目前第三方欺诈公司推出的服务产品有同质化的特点,预计行业发展到后期会竞争加剧,最终会形成几家专业化的行业巨头。

    1.1K90

    金融欺诈场景下的Spark实践

    推荐阅读: 1,Spark Structured Streaming高级特性 2,Spark高级操作之json复杂和嵌套数据结构的操作一...

    808100

    针对移动支付的道德欺诈系统

    团队对在移动设备上的程序中运行现有欺诈security challenges Boxer 进行了大规模测量研究后发现,虽然 Boxer 总体上运行良好,但它无法在以低于每秒一帧(FPS)的速度运行的设备上进行有效扫描 团队对在移动设备上的程序中运行现有欺诈security challenges Boxer   进行了大规模测量研究后发现,虽然 Boxer 总体上运行良好,但它无法在以低于每秒一帧(FPS)的速度运行的设备上进行有效扫描 于是团队设计了 Daredevil,一种新的欺诈系统,用于扫描支付卡,并在各种性能的移动设备和硬件配置中都能很好地工作。 与 Boxer 相比,Daredevil将以低于1 FPS的速度运行的设备数量减少了一个数量级,为打击欺诈行为提供了一个更公平的系统。 Daredevil错误地将7次扫描标记为欺诈,假阳性率为2.2%。错误均匀地分布在所有设备上,这体现了Daredevil的公平性。

    13640

    图数据库·业务总结·欺诈

    3.1 股票投研情报分析 2.2 公安情报分析 通过融合企业和个人银行资金交易明细、通话、出行、住宿、工商、税务等信息构建初步的“资金账户-人-公司”关联知识图谱。 比如银行和公安经侦监控资金账户,当有一段时间内有大量资金流动并集中到某个账户的时候很可能是非法集资,系统触发预警(图7) 一般欺诈 ? 欺诈判断1:多个用户使用相同的地址、银行卡、身份证、电话等其他信息 电子商务的欺诈 ? 欺诈判断2:一个ip或Cookies 服务于多个信用卡或用户。 欺诈判断3:信息不一致。 比如借款人张xx和借款人吴x填写信息为同事,但是两个人填写的公司名却不一样。

    51430

    天御欺诈服务,让「天下无贼」

    企业面临欺诈风险? 用我们的沉淀,给企业足够的“安全感” 腾讯云发布天御欺诈服务 随着互联网理财、P2P 金融的快速发展,带有恶意目的的骗贷,骗保、洗钱等恶意行为也形成了新的地下产业,这些黑色产业链给企业品牌带来了严重的经济损失 基于企业的痛点,腾讯云通过大数据分析能力,以及在对抗社交诈骗、电商刷单、保驾互联网银行和支付业务安全上累积的实战经验,发布天御欺诈服务,解决企业被欺诈的风险,让企业专注于业务的发展。 天御欺诈服务,基于腾讯管家平台和社交生态所积累的海量恶意数据,以及通过行为识别,画像计算等能力,精准识别出恶意用户,并通过服务的方式通知企业客户进行跟踪标记和拦截等处理方式。 ? 一网打尽以上威胁与风险,为你们做到「天下无贼」 如何获取腾讯云天御欺诈服务 客户可通过腾讯云工单系统提交工单咨询该服务或者拨打95716咨询

    2.7K70

    【独家编译】美国欺诈服务商Precognitive获百万美元种子轮融资 欺诈是新的风口?

    数据猿导读 今年年内,国内外数家欺诈服务提供商获得了数百万至数千万美元融资,欺诈已经成为大数据领域一个新的热门话题。 ? 编译 | 大文 据ChicagaoInno消息,美国欺诈公司Precognitive于日前宣布,其获得了125万美元的种子轮融资。本轮融资由科拉松资本(Corazon Capital)领投。 Precognitive通过分析用户与在线服务之间的交互行为数据,向客户提供欺诈预警。 其创始人Sam Bouso表示,目前Precognitive拥有三种不同的欺诈技术以适应不同和客户与场景。 他说:“欺诈服务有大量数据可供挖掘,大多数解决方案都专注于在交易中进行欺诈,但我们实际上能够通过多次访问监控设备和用户活动,从而在欺诈发生之前为客户提供预警。” 今年年内,美国Signifyd、Rippleshot,国内邦盛科技、同牛科技、数美科技、冰鉴科技等数家欺诈服务提供商获得了数百万至数千万美元融资,欺诈已经成为大数据领域一个新的热门话题。

    41370

    机器学习——信用卡欺诈案例

    21720

    电商欺诈比赛的方案及代码分享!

    https://github.com/rickyxume/TianChi_RecSys_AntiSpam 实践背景 1.1 思路简述 本赛题属于结构化数据二分类任务,虽然是风控竞赛,但思考方向不局限于欺诈检测或异常检测 改进方向 竞赛后续: 尝试用GNN之类的半监督图算法 图建模实现欺诈图算法(如 FRAUDAR[13]、RICD[14] 等),离线扩充数据再做有监督学习 BTW,RICD[14]就是本次赛题出处的论文 ,其实自己那时候还是一个刚接触竞赛没多久的风控小白(其实想着考研来着呜呜呜我这个菜鸡),一切只因 Datawhale 开源分享的 baseline 进的坑,后面抱着学习的心态边秋招边打比赛,最终拿到了欺诈方向的

    7730

    不漫谈大数据欺诈技术架构 No.126

    一年多以前,有朋友让我聊一下你们的大数据欺诈架构是怎么实现的,以及我们途中踩了哪些坑,怎么做到从30min延迟优化到1s内完成实时欺诈。 时间也过了很久了,最近看到圈里一些东西,发现当时的这套架构并未落伍,依然具有很大的参考价值,所以今天跟大伙聊聊关于大数据欺诈体系怎么搭建,主要来源是来自于我工作的时候的实践,以及跟行业里的很多大佬交流的实践 这套架构我做的时候主要领域是信贷行业的大数据欺诈,后来也看过电商的架构,也看过金融大数据的架构,发现其实大家使用的其实也差不多是这个套路,只是在各个环节都有不同的细节。 比如运营商通讯数据、比如大型电商的行为数据、比如各种保险数据,以及各个机构贷款记录的互相沟通,这些数据源,都非常核心也都非常值钱,是现在欺诈非常核心的数据。 当然也有更加粗暴更加高效的做法,就是直接购买外部的黑名单数据,这让欺诈变得更加简单,遇到就直接拒,可以减少非常的人力物力成本去做其他的核查。 数据抽取 ?

    74730

    讯飞广告欺诈赛的王牌模型catboost介绍

    前段时间,MeteoAI小伙伴参加了讯飞移动广告欺诈算法挑战赛算法挑战大赛[1],最终取得了复赛14/1428名的成绩。 而俄罗斯Yandex公司开源的 CatBoost[2]模型可直接对类别特征进行处理,在很多公开数据集上的表现都相当优异。 斯坦福大学使用机器学习做次季节温度/降水预报 Nature(2019)-地球系统科学领域的深度学习及其理解 交叉新趋势|采用神经网络与深度学习来预报降水、温度等案例(附代码/数据/文献) REFERENCE [1] 移动广告欺诈算法挑战赛算法挑战大赛

    2.5K51

    腾讯安全联合发布《2020中国移动广告欺诈白皮书》,深度揭秘三大欺诈主流模式

    针对这一现状,腾讯安全天御、腾讯防水墙和InMobi联合发布了《2020中国移动广告欺诈白皮书》,在深度揭秘当前移动广告欺诈常见场景、作弊手段的基础上,分析移动广告欺诈三种主流模式,提出依托SDK集成模式从流量源头预防是移动广告欺诈的趋势 三大主流模式并行下,移动广告欺诈态势呈现出有所缓解的趋势。随着欺诈行为的不断演变,广告主欺诈手段也日益向专业化、复杂化发展,移动广告作弊获利会越来越难。 在这个背景下,欺诈预防的效果要远大于事后的追溯和补救,源头预防已成为广告主、品牌主、媒体和用户都认同的趋势,无感验证API和能够直接展示媒体端底层数据的SDK集成模式,势必成为中国移动广告欺诈的主流模式 这也需要更多广告主、媒体、第三方检测和验证公司的参与和支持。 为帮助企业广告主斩断流量欺诈源头,腾讯安全天御携手腾讯防水墙打造出了一套营销质量优化的整体解决方案。 未来,腾讯将以自身欺诈能力为依托,协同生态伙伴,助力企业实现流量源头欺诈预防,发扬科技向善,护航业务安全发展。

    85620

    欺诈中所用到的机器学习模型有哪些?

    作者 | 微调(知乎ID微调,普华永道高级数据科学家) 欺诈方向的实际应用很多,我有做过保险业欺诈和零售快消业的欺诈检测,抛砖引玉的谈谈欺诈项目的"道"和"术"。 欺诈点验证; 第三部分(5)归纳并提出了一个欺诈模型的通用框架供大家参考。 1. 背景 - 为什么欺诈检测难度很高? 欺诈项目很多情况下就是客户根本不知道什么是欺诈,什么不是。 即使像银行还有保险公司这种常年和诈骗打交道的行业,也必须常常更新自己的检测手段,而不是把赌注压到同一个模型上。 欺诈项目的操作顺序(2) - 算法 一般我们对欺诈检测做两种假设: 时序相关(time dependent)。 欺诈项目的操作顺序(3) - 如何验证欺诈点? 假设我们通过上面的无监督学习得到了一些“潜在的欺诈点”,我们可以做一些分析来验证它们是否真的是欺诈

    1.1K41

    相关产品

    • 腾讯知识图谱

      腾讯知识图谱

      腾讯知识图谱是一个集成图数据库、图计算引擎和图可视化分析的一站式平台。支持抽取和融合异构数据,支持千亿级节点关系的存储和计算,支持规则匹配、机器学习、图嵌入等图数据挖掘算法,拥有丰富的图数据渲染和展现的可视化方案……

    相关资讯

    热门标签

    扫码关注腾讯云开发者

    领取腾讯云代金券