首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

朱建平:如何架构海量存储系统

本期沙龙特邀请腾讯的技术专家分享关于技术架构、落地实践案例、无服务器云函数架构、海量存储系统架构等话题,从技术角度看架构发展,为开发者们带来丰富的实践经验内容,深度揭秘技术架构。...下面是朱建平老师关于如何架构海量存储系统的分享。 朱建平_视频.jpg 讲师介绍:朱建平,毕业于武汉大学计算数学系。...接下来我给大家分享的是海量存储系统,有人说存储是“后台开发领域中的明珠”,是后台技术挑战最大的,今天那么多人趁着周末的时间来学习,我们一起来剖析下这个“明珠”。...整个分享分为四块:一是讲讲什么是存储,虽然大家都接触过,今天我稍微系统点地给大家梳理下;二是怎么去从零构建一个海量存储的系统,在座各位亲自构建海量分布式存储系统的机会可能并不是很多,但是可以从中学习下怎么去架构后台系统...这些对于海量存储系统都是非常关键的一些技术,大家如果要了解的话,可以从这几个方面展开看看,拓展来看,还有异地分布方面的一些技术。

3.8K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    海量数据, 为何总是 海量垃圾 ?!

    2017.9.10, 深圳, Ken Fang 雷军说:我拥有海量的数据, 却不知道怎么用?每年, 花在存储海量数据的费用, 也是海量;足以使企业破产⋯ 为何会如此?...当我们将所谓 “海量数据分析” 的神秘面纱给揭开时, 打破 “海量数据分析” 的神话, 就会很容易的明白, 真正的问题到底出在哪?为何谷歌能做到的, 我们却做不到?...大家都明白的 Common Sense: 做海量数据分析, 要先能建立数据模型;有了数据模型, 我们才能从 “海量” 数据中, 去提炼出 “有用” 的数据。...海量数据分析最关键、最重要的ㄧ步:将海量数据 “转换” 为有用的数据。 而数据模型建立的前提是: @ 要能先分析出, 产生数据背后的 “用户的目的” 。例如:用户是基于什么样的社会事件?天灾?...这样的数据, 再如何的 “海量”, 也根本没法经由 “数据分析师”, 使用任何的数据分析工具, 建立出任何有效的数据模型;海量数据将永远没办法转换为有用的数据。 为什么谷歌能做得到?

    95850

    存储系统的那些事

    HDFS 更适合做日志存储和日志分析(数据挖掘),而不是存储海量的富媒体文件。因为: HDFS 的 block 大小为 64M,如果文件不足 64M 也会占用 64M。...有人可能会说我可以调小 block 的尺寸来适应,但这是不正确的做法,HDFS 的架构是为大文件而设计的,不可能简单通过调整 block 大小就可以满足海量小文件存储的需求。...当然作为大文件日志型存储,这个瓶颈会非常晚才遇到;但是如果作为海量小文件的存储,这个瓶颈很快就会碰上。 HDFS 仍然沿用文件系统的 API 形式,比如它有目录这样的概念。...七牛云存储的设计目标是针对海量小文件的存储,所以它对文件系统的第一个改变也是去关系,也就是去目录结构(有目录意味着有父子关系)。...早在 2012 年 2 月,我们就启动了新一代基于纠删码算术冗余的存储系统的研发。新存储系统的关注焦点在: 成本。经典的 3 副本存储系统虽然经典,但是代价也是高昂的,需要我们投入 3 倍的存储成本。

    1.4K50

    盘点分布式文件存储系统____分布式文件存储系统简介

    盘点分布式文件存储系统 在项目的数据存储中,结构化数据通常采用关系型数据库,非结构化数据(文件)的存储就有很多种方式,服务器本地存储、Nas挂载、ftp等等,今天就来盘点一下,分布式文件存储系统。...高可用性:在分布式文件系统中,高可用性包含两层,一是整个文件系统的可用性,二是数据的完整和一致性 低成本:分布式存储系统的自动容错和自动负载平衡允许在成本较低服务器上构建分布式存储系统。...TFS是一个高可扩展、高可用、高性能、面向互联网服务的分布式文件系统,主要针对海量的非结构化数据,它构筑在普通的Linux机器 集群上,可为外部提供高可靠和高并发的存储访问。...MooseFS还具有可找回误操作删除的文件,相当于一个回收站,方便业务进行定制;同时MooseFS对于海量小文件的读写要比大文件读写的效率高的多。...但是分布式文件存储系统,并非只有HDFS。今天的大数据开发分享,我们就主要来讲讲常见的分布式文件存储系统

    5.6K10

    存储系统的那些事

    存储系统,从其固有的任务,很难摆脱复杂系统的诅咒。无论是单次文件系统,还是C / S或B / S结构数据库存储中间件的兴起,还是当今最热的云存储服务,存储都非常复杂,而且越来越复杂。...但是对于存储系统,你需要把大部分的精力花在处理各种异常情况上,你应该相信,即使是这些混乱的、多样化的分支过程的错误,也是“业务逻辑”的正常存储系统。...在分布式存储系统出现之前,一些应用程序采用了一些基于单一文件系统的改进版本。例如,将RAID5添加到单个文件系统中,以实现数据冗余,以解决单个文件系统的可靠性问题。...有人可能会说我可以调小 block 的尺寸来适应,但这是不正确的做法,HDFS 的架构是为大文件而设计的,不可能简单通过调整 block 大小就可以满足海量小文件存储的需求。 2....当然作为大文件日志型存储,这个瓶颈会非常晚才遇到;但是如果作为海量小文件的存储,这个瓶颈很快就会碰上。 3. HDFS 仍然沿用文件系统的 API 形式,比如它有目录这样的概念。

    7410

    数据存储系统的 8020 法则

    混合介质存储系统技术引起了热烈的争议,它也被应用于为Facebook这种规模的应用程序设计存储系统。问题就在这里:通过给数据分配不均等的资源可以给类似帕累托分布的结构更好的支持。...使用多种存储介质来代替同介质存储系统,这样的分配就可以让我们从那些不经常访问的数据处夺来资源补贴给那些经常被访问的数据。 对帕累托原则的误解导致了构建和度量存储系统时的诸多混乱。...因此,为了获得优异的性能,即便不使用磁盘,存储系统仍然需要使用多种介质,实现混合存储。我发现这就是”混合存储“和”全闪存阵列”(AFA)被误解的原因。...对仍然使用磁盘做存储者来说,混合存储系统并不是一个廉价存储系统,它只是一个把更多的钱花费在存放热门数据的高性能存储上的一种存储框架。...存储系统也不例外,而且建设存储系统需要仔细地对工作负载响应进行分析,这样才能正确地确定存储规模,适应存储工作区的特性。 结尾语: 这篇文章最顶端的图片是一张旧的讽刺斯科特纸巾商业公司的图片。

    1.7K90

    海量数据处理

    海量数据处理是基于海量数据上的存储、处理、操作。 所谓海量,就是数据量很大,可能是TB级别甚至是PB级别,导致无法一次性载入内存或者无法在较短时间内处理完成。...它主要缺点: 1) 对于半结构化、非结构化的海量数据存储效果不理想。像电子邮件、 超文本、标签(Tag)以及图片、音视频等各种非结构化的海量数据。...2)Google的Bigtable Bigtable 是谷歌开发的一套结构化存储系统。数据以多维顺序表的方式进行存储。...是一套采用对等网络计算(peer to peer,P2P)技术实现的结构化数据存储系统。...主要特性:   ● 分布式   ● 基于column的结构化   ● 高伸展性 2 海量数据处理 海量数据处理就是如何快速地从这些海量数据中抽取出关键的信息,然后提供给用户

    1.4K10
    领券