展开

关键词

画像分析

关于用户画像的概念,数据相关从业人员应该都知道。用户画像的应用场景很广泛,比如精细化运营、数据分析与挖掘、精准营销、搜索和广告的个性化定向推送等。 用户画像分析核心一个是对用户建模打标签,关于这,之前宝器在内部交流群分享了一份个人学习的资料,大家都觉得真香,今天把全部内容共享出来供大家自行下载阅读。 主要目录: 1、用户画像应用场景 2、产品层面的宏观分析维度 3、用户画像标签类型 4、用户画像项目开发流程 5、数据仓库介绍 6、用户画像数据质量管理 7、常见需要开发的用户画像相关模型 8、用户行为标签表实际开发案例

68350

【数据分析】用户画像分析

相比传统的线下会员管理、问卷调查、购物篮分析,大数据第一次使得企业能够通过互联网便利地获取用户更为广泛的反馈信息,为进一步精准、快速地分析用户行为习惯、消费习惯等重要商业信息,提供了足够的数据基础。 这也使得用户画像模型具备实际意义,能够较好的满足业务需求。如:判断用户偏好。短文本,每个标签通常只表示一种含义,标签本身无需再做过多文本分析等预处理工作,这为利用机器提取标准化信息提供了便利。 制定标签规则,并能够通过标签快速读出其中的信息,机器方便做标答提取、聚合分析。所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。 数据源分析 构建用户画像的数据来源于所有用户相关的数据。对于用户相关数据的分类,引入一种重要的分类思想:封闭性的分类方式。 目标分析 用户画像的目标是通过分析用户行为,最终为每个用户打上标签,以及该标签的权重。

1.7K51
  • 广告
    关闭

    腾讯云618采购季来袭!

    腾讯云618采购季:2核2G云服务器爆品秒杀低至18元!云产品首单0.8折起,企业用户购买域名1元起,还可一键领取6188元代金券,购后抽奖,iPhone、iPad等你拿!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    用户画像,该怎么分析

    用户画像分析的错误姿势 1.限于数据,动不敢动。一提用户画像,很多人脑海里立刻蹦出了性别,年龄,地域,爱好等基础信息字段,然后大呼:我们好像没这个数据,于是放弃分析了。 以上问题,都是太过纠结于用户画像四个字,忽视了分析两个字导致的。用户画像作为一个基础数据体系,本身并没有分析功能。单纯的罗列用户标签或者拆解用户指标,也起不到分析作用。 像利用好用户画像,还得按分析套路一步步来。 第一步:转化商业问题 用户画像分析,本质上是从用户的角度思考问题。 用户画像只是分析的一个工具,和其他分析一样,也要先考虑:我要解决的实际问题到底是什么。想清楚了,再把问题转化成用户相关的问题,就能继续使用用户画像分析方法了。 需要注意的是,商业问题是很复杂的。 第五步:归纳分析结论 如果以上几步做好了,在最后推分析结论就是水到渠成的事,完全不费力气。实际上,用户画像分析最大的问题都是出在前五步的。

    83931

    用户画像,该怎么分析

    有同学问:陈老师,我领导让我做用户画像分析,可是我做了一大堆数据,却被批:也没分析什么东西啊?该咋办?今天系统解答一下。 用户画像分析的错误姿势 1.限于数据,动不敢动。 以上问题,都是太过纠结于用户画像四个字,忽视了分析两个字导致的。用户画像作为一个基础数据体系,本身并没有分析功能。单纯的罗列用户标签或者拆解用户指标,也起不到分析作用。 像利用好用户画像,还得按分析套路一步步来。 第一步:转化商业问题 用户画像分析,本质上是从用户的角度思考问题。 用户画像只是分析的一个工具,和其他分析一样,也要先考虑:我要解决的实际问题到底是什么。想清楚了,再把问题转化成用户相关的问题,就能继续使用用户画像分析方法了。 需要注意的是,商业问题是很复杂的。 第五步:归纳分析结论 如果以上几步做好了,在最后推分析结论就是水到渠成的事,完全不费力气。实际上,用户画像分析最大的问题都是出在前五步的。

    1.8K30

    用户画像行为分析流程

    构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息分析而来的高度精炼的特征标识。 比如,某公司想推出一款面向5-10岁儿童的玩具,通过用户画像进行分析,发现形象=“喜羊羊”、价格区间=“中等”的偏好比重最大,那么就给新产品提供类非常客观有效的决策依据。 业务经营分析以及竞争分析,影响企业发展战略 构建流程 数据收集 数据收集大致分为网络行为数据、服务内行为数据、用户内容偏好数据、用户交易数据这四类。 还得一提的是,储存用户行为数据时最好同时储存下发生该行为的场景,以便更好地进行数据分析。 数据可视化分析 这是把用户画像真正利用起来的一步,在此步骤中一般是针对群体的分析,比如可以根据用户价值来细分出核心用户、评估某一群体的潜在价值空间,以作出针对性的运营。 如图:

    2.7K6855

    用户画像,该怎么分析

    有同学问:陈老师,我领导让我做用户画像分析,可是我做了一大堆数据,却被批:也没分析什么东西啊?该咋办?今天系统解答一下。 用户画像分析的错误姿势 1.限于数据,动不敢动。 以上问题,都是太过纠结于用户画像四个字,忽视了分析两个字导致的。用户画像作为一个基础数据体系,本身并没有分析功能。单纯的罗列用户标签或者拆解用户指标,也起不到分析作用。 像利用好用户画像,还得按分析套路一步步来。 第一步:转化商业问题 用户画像分析,本质上是从用户的角度思考问题。 用户画像只是分析的一个工具,和其他分析一样,也要先考虑:我要解决的实际问题到底是什么。想清楚了,再把问题转化成用户相关的问题,就能继续使用用户画像分析方法了。 需要注意的是,商业问题是很复杂的。 第五步:归纳分析结论 如果以上几步做好了,在最后推分析结论就是水到渠成的事,完全不费力气。实际上,用户画像分析最大的问题都是出在前五步的。

    1.3K52

    用户画像行为分析流程

    构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息分析而来的高度精炼的特征标识。 比如,某公司想推出一款面向5-10岁儿童的玩具,通过用户画像进行分析,发现形象=“喜羊羊”、价格区间=“中等”的偏好比重最大,那么就给新产品提供类非常客观有效的决策依据。 业务经营分析以及竞争分析,影响企业发展战略 构建流程 数据收集 数据收集大致分为网络行为数据、服务内行为数据、用户内容偏好数据、用户交易数据这四类。 还得一提的是,储存用户行为数据时最好同时储存下发生该行为的场景,以便更好地进行数据分析。 数据可视化分析 这是把用户画像真正利用起来的一步,在此步骤中一般是针对群体的分析,比如可以根据用户价值来细分出核心用户、评估某一群体的潜在价值空间,以作出针对性的运营。

    1.6K80

    用户画像分析与场景应用

    例如上述基于最简单的用户数据可以分析出来的用户画像信息。 2、组成结构 用户画像的最核心工作是基于数据采集为用户贴上标签,随着标签的不断丰富用户的画像也会越来越清晰,最终达到了解甚至理解用户的能力。 3、画像的价值 在用户量大业务复杂的公司,都会花很高的成本构建用户画像体系,在各个业务线上采集数据做分析,不断深入的了解用户才能提供更加精准的服务和多样化的运营策略。 ? 上述就是典型的人群画像分析的非典型案例,实际上最近几年对90人群分析报告已经非常多而且准确,很多数据公司都会从:社会属性、消费能力、游戏爱好、宠物、网络应用等多个热门领域做深度分析分析人群画像可以在商业应用中产生非常高的价值。 三、深度应用 1、商圈分析 首先基于商圈区域圈用户群,这里很好理解用户在某个商圈内产生数据,依次获取用户相关标签做该商圈内用户画像分析。 2、行业分析 行业分析画像是非常复杂的一种报告,通常会考量:用户体量、人群特征、技术、营收规模、竞争力、竞争格局、行业政策、市场饱和度等多个要素。

    66730

    客户画像中的聚类分析

    客户画像会用聚类分析 实际工作中,最常使用的当属回归类模型,其次便是客户画像。 即便是评分模型也会涉及到客户画像,由于首富客户的违约特征与普通百姓不同,故需进行区分,信用分池即为客户画像。 客户画像使用的技术为聚类分析,在营销场景中经常会逻辑回归模型与聚类分析一起配合构建模型。 聚类分析是什么? 可见聚类分析是如此的不稳定,因此想做好聚类分析,必须要遵循完整的数据分析流程,才能够保证建模数据的稳定以及结果的可靠。 ? 聚类分析的流程? 可以使用聚类分析来判断红楼梦的作者,通过分析红楼梦的语言风格,将红楼梦120回中的每一回视作一个观测,将虚词频次视作分析变量,做聚类分析

    83820

    DF消费者人群画像—信用智能评分方案分享(top5)

    此次比赛是中国移动福建公司提供2018年某月份的样本数据,包括客户的各类通信支出、欠费情况、出行情况、消费场所、社交、个人兴趣等丰富的多维度数据,参赛者通过分析建模,运用机器学习和深度学习算法,准确评估用户消费信用分值 让参赛者在真实业务场景上使用数据;(2)可以交流多种想法,可以接触到企业内部真实脱敏的数据,让参赛者在真实业务场景上使用数据;(3)进一步提升信用评估方法技能,通过此次参赛可进一步提升参赛选手的对用户信用评分的技能,可以用在用户画像和黑产识别上 年龄与信用分的相关性图 数据探索:我们对用户缴费金额与信用分,用户年龄与信用分进行了分析。同时对一些值进行替换。 3.研究成果 经过上面一系列的过程,从数据分析到特征工程,然后不断的完善,得到最终的结果,模型方面我们保证差异性,特征方面我们分不同的组别进行训练。最终将多个结果进行融合。 ?

    1.2K20

    【数据分析】创建定性用户画像

    当我们有多个用户画像时,我们需要考虑用户画像的优先级,在产品设计时,首先考虑满足首要用户画像的需求,然后在不冲突的情况下尽量满足次要用户画像的需求。 如何创建用户画像呢?下面以我所负责的一款企业产品为例,来讲述用户画像的创建过程,希望和大家一起交流经验。在这个项目中我们通过定性研究创建了用户画像。 然而,即使要创建定量用户画像,前期充分的定性调研也非常重要,在对聚类分析结果的解读或参数的调整中,对用户的充分理解可以帮助我们创建出有意义的用户画像。   用户画像的创建可分为以下几个步骤: ? 通过前面阶段的数据收集,我们收集到了大量数据,如何在数据分析的过程中让多人参与,同时又不会遗漏掉数据呢,亲和图此时就非常合适,该方法的优势在于让大量定性信息的分析过程可视化,便于大家协同工作和统一认识, 当时的做法是按企业类型定义了三个企业用户画像,然后每个企业中再定义典型的个人用户画像

    48790

    【数据分析】创建定性用户画像

    当我们有多个用户画像时,我们需要考虑用户画像的优先级,在产品设计时,首先考虑满足首要用户画像的需求,然后在不冲突的情况下尽量满足次要用户画像的需求。 如何创建用户画像呢?下面以我所负责的一款企业产品为例,来讲述用户画像的创建过程,希望和大家一起交流经验。在这个项目中我们通过定性研究创建了用户画像。 然而,即使要创建定量用户画像,前期充分的定性调研也非常重要,在对聚类分析结果的解读或参数的调整中,对用户的充分理解可以帮助我们创建出有意义的用户画像。   用户画像的创建可分为以下几个步骤: ? 通过前面阶段的数据收集,我们收集到了大量数据,如何在数据分析的过程中让多人参与,同时又不会遗漏掉数据呢,亲和图此时就非常合适,该方法的优势在于让大量定性信息的分析过程可视化,便于大家协同工作和统一认识, 当时的做法是按企业类型定义了三个企业用户画像,然后每个企业中再定义典型的个人用户画像

    48390

    数据分析思维和方法:用户画像分析

    无论是产品策划还是产品运营, 前者是如何去策划一个好的功能, 去获得用户最大的可见的价值以及隐形的价值, 必须的价值以及增值的价值, 那么了解用户, 去做用户画像分析, 会成为数据分析去帮助产品做做更好的产品设计重要的一个环节 因为当我们知道我们的群体的是什么样的一群人的时候, 潜在的用户也是这样的类似的一群人, 这样才可以做最精准的拉新, 提高我们的ROI 在真正的工作中, 用户画像分析是一个重要的数据分析手段去帮助产品功能迭代 总的来说, 用户画像分析就是基于大量的数据, 建立用户的属性标签体系, 同时利用这种属性标签体系去描述用户 02 用户画像的作用 像上面描述的那样, 用户画像的作用主要有以下几个方面 ? 数据分析 在做描述性的数据分析的时候, 经常需要画像的数据, 比如描述抖音的美食博主是怎么样的一群人, 他们的观看的情况, 他们的关注其他博主的情况等等 简单来说就是去做用户刻画的时候, 用户画像可以帮助数据分析刻画用户更加清晰 比如我们想要比较音乐vip 的用户和非vip 的用户他们在行为活跃和年龄性别地域 注册时间, 听歌偏好上的差异, 我们就可以利用这个平台来完成 功能画像分析: 我们还可以利用用户画像平台进行快速进行某个功能的用户画像描述分析

    50421

    Stack Overflow 用户画像数据分析

    2017年和2018年的数据,使用Python对数据进行整合与清洗,利用RStudio与Tableau进行探索性数据分析,使用Typora撰写Markdown数据分析报告。 本次分析报告将展示参与Stack网站调查问卷的人员的画像,以及自己目前工作职位数据分析师在Stack中的可分析的有趣的点进行深入挖掘,当然报告中也不乏彩蛋,Did you get anything about ▌假设问题 Stack Overflow(后面简称SO)想要针对自己的用户推送一篇广告,假设针对所有用户推送,那SO的用户画像到底是什么样子的? 问题解析 作为一名数据分析师,我可以从数据集中得到接受调查人群的用户大致画像,当然这只是整体状况(后续进阶还可以对SO用户聚类,分别推送不同的广告),然后从用户画像的角度配合策划部门拿出广告方案。 OK,18年的数据偏多,正好,这样的数据时效性还是不错的,那我接着往下探究,看看我们数据呈现了一个怎样的画像。 一维数据画像 ?

    2K72

    【数据分析】用户画像,这么构!

    这也使得用户画像模型具备实际意义。能够较好的满足业务需求。如,判断用户偏好。短文本,每个标签通常只表示一种含义,标签本身无需再做过多文本分析等预处理工作,这为利用机器提取标准化信息提供了便利。 人制定标签规则,并能够通过标签快速读出其中的信息,机器方便做标签提取、聚合分析。所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。 3.1 数据源分析 构建用户画像是为了还原用户信息,因此数据来源于:所有用户相关的数据。 对于用户相关数据的分类,引入一种重要的分类思想:封闭性的分类方式。 如何对用户行为数据构建数据模型,分析出用户标签,将是本文着重介绍的内容。 3.2 目标分析 用户画像的目标是通过分析用户行为,最终为每个用户打上标签,以及该标签的权重。 四、总结 本文并未涉及具体算法,更多的是阐述了一种分析思想,在计划构建用户画像时,能够给您提供一个系统性、框架性的思维指导。 核心在于对用户接触点的理解,接触点内容直接决定了标签信息。

    1.2K90

    干货 :基于用户画像的聚类分析

    企业期望搭建用户画像,对客户进行群体分析与个性化运营,以此激活老客户,挖掘百亿续费市场。众安科技数据团队对该企业数据进行建模,输出用户画像并搭建智能营销平台。 再基于用户画像数据进行客户分群研究,制订个性化运营策略。 本文重点介绍聚类算法的实践。对用户画像与个性化运营感兴趣的亲们,请参阅本公众号其他文章。 首先,对数据进行标准化处理,处理异常值,补全缺失值,为了顺利应用聚类算法,还需要使用户画像中的所有标签以数值形式体现。 众安科技为该保险公司定制的用户画像中,存在超过200个标签,为不同的运营场景提供了丰富的多维度数据支持。 我们可以通过关联规则分析(Association Rules)发现并排除高度相关的特征,也可以通过主成分分析(Principal Components Analysis,简称PCA)进行降维。

    3.4K50

    攻击者画像内容分析

    另外某些物联网设备提供商(云服务),可以通过IP来获取同出口下IP的视频数据,从而获取攻击者视频画像数据。 另外某国际计算机硬件企业也可以通过其管家程序获取对应IP下设备的画像数据 ? 另外还有其它信息,比如攻击者采用域名和vps的信息 域名含有的画像信息可以包含域名注册时间,域名注册商,域名信息,同注册信息域名,域名绑定IP。 IP含有的画像信息可以包含IP反查域名、IP开放端口、IP备案信息、IP历史域名信息。 ?

    1.4K20

    简述2017年小程序用户画像分析

    腾讯官方发布公告称为微信添加新能力,让开发者更好地拓展应用场景、分析用户数据。伴随着微信小程序的完善,在功能上也越来越开放。 1、小程序用户人群画像总览 2、小程序用户性别与年龄分布 阿拉丁统计平台显示,小程序用户中男性占比52%,用户中年龄在26-29岁之间占比29%,年龄在30-35岁之间占 比26%,年龄在18-24岁之间的占比

    1.2K50

    相关产品

    • 企业画像

      企业画像

      企业画像是腾讯云推出的面向智慧城市、金融监管、企业情报、企业评估等场景的企业大数据综合服务平台。通过构建亿级企业知识图谱,深度挖掘企业、高管、法定代表人、产品、产业链间的复杂网络关系,提供城市、区域宏观经济分析、招商引资推荐服务,引导地方产业发展……

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭

      扫码关注云+社区

      领取腾讯云代金券