首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【深度学习 | Keras】Keras操作工具类大全,确定不来看看?

其原理很简单,它接收两个张量作为输入,并通过逐元素相乘将它们相乘。它可以接收两个形状相同的张量,也可以广播其中一个张量以匹配另一个张量的形状。输出的张量形状与输入张量形状相同。...具体地说,如果我们有两个输入张量 A 和 B ,并且它们具有相同的形状 (batch_size, n) ,那么它们的逐元素相乘的结果 C 可以表示为: C = A \odot B 其中, \odot 表示逐元素相乘...输出:形状与输入相同的张量,其每个元素都是输入张量对应元素的乘积。 该层可以用于许多不同的场景,例如: 将一个张量乘以另一个张量,用于实现元素级别的加权或缩放。...(10)(input_data) # 在此之后,输出形状将变为(batch_size, 10, features) # 这意味着输入向量将重复10次,每个副本都是原始输入的副本 # 接下来可以继续添加其他层进行处理或生成输出...参数详解 在使用 Flatten 层时,需要注意输入张量的维度,通常要保证输入张量的最后两个维度是空间维度(如图片的宽和高),前面的维度是批次大小和通道数,这样才能保证张量能够正确地展平为向量。

27610

Deep learning with Python 学习笔记(1)

图像数据保存在 4D 张量中,通常用二维卷积层(Keras 的 Conv2D )来处理 Keras框架具有层兼容性,具体指的是每一层只接受特定形状的输入张量,并返回特定形状的输出张量 layer = layers.Dense...这个层将返回一个张量,第一个维度的大小变成了 32 因此,这个层后面只能连接一个接受 32 维向量作为输入的层,使用 Keras 时,你无须担心兼容性,因为向模型中添加的层都会自动匹配输入层的形状,下一次层可以写为...model.add(layers.Dense(32)) 它可以自动推导出输入形状等于上一层的输出形状 具有多个输出的神经网络可能具有多个损失函数(每个输出对应一个损失函数)。...要点 如果要对 N 个类别的数据点进行分类,网络的最后一层应该是大小为 N 的 Dense 层 对于单标签、多分类问题,网络的最后一层应该使用 softmax 激活,这样可以输出在 N 个输出类别上的概率分布...要找到合适的模型大小,一般的工作流程是开始时选择相对较少的层和参数,然后逐渐增加层的大小或增加新层,直到这种增加对验证损失的影响变得很小 添加权重正则化 理论:简单模型比复杂模型更不容易过拟合

1.4K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Transformer聊天机器人教程

    Transformer模型使用自注意力堆栈而不是RNN或CNN来处理可变大小的输入。这种通用架构具有许多优点: 它没有假设数据的时间/空间关系。这是处理一组对象的理想选择。...然后将每个头部的注意力输出连接起来并穿过最后的致密层。 查询,键和值不是一个单独的注意头,而是分成多个头,因为它允许模型共同处理来自不同表示空间的不同位置的信息。...Functional API的一个优点是它在构建模型时验证模型,例如检查每个层的输入和输出形状,并在出现不匹配时引发有意义的错误消息。...值和键接收编码器输出作为输入。 查询接收来自掩蔽的多头关注子层的输出。...2个Dense层然后Dropout 当查询从解码器的第一个注意块接收输出,并且键接收编码器输出时,注意权重表示基于编码器输出给予解码器输入的重要性。

    2.4K20

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第14章 使用卷积神经网络实现深度计算机视觉

    输出的大小是输入神经元的数量除以步长,再取整。例如:如果输入大小是13,步长是5(见图14-7),则输出大小是3(13 / 5 = 2.6,再向上圆整为3),零填充尽量在输入上平均添加。...当strides=1时,层的输出会和输入有相同的空间维度(宽和高),这就是same的来历。...它的原理非常不同:它计算整个特征映射的平均值(就像是平均池化层的核的大小和输入的空间维度一样)。这意味着,全局平均池化层对于每个实例的每个特征映射,只输出一个值。...发生这种情况时,因为形状不同(见图14-17中虚线的跳连接),输入不能直接添加到残差单元的输出上。...紧密层需要的是一个具体的输入大小(因为它的每个输入特征都有一个权重),卷积层却可以处理任意大小的图片(但是,它也希望输入有一个确定的通道数,因为每个核对每个输入通道包含一套不同的权重集合)。

    1.8K41

    深度学习(六)keras常用函数学习 2018最新win10 安装tensorflow1.4(GPUCPU)+cuda8.0+cudnn8.0-v6 + keras 安装CUDA失败 导入ten

    Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras: 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性) 支持CNN和RNN,...该层创建了一个卷积核, 该卷积核对层输入进行卷积, 以生成输出张量。 如果 use_bias 为 True, 则会创建一个偏置向量并将其添加到输出中。...(下标)转换为具有固定大小的向量,如[[4],[20]]->[[0.25,0.1],[0.6,-0.2]]。...参考激活函数 输入shape 任意,当使用激活层作为第一层时,要指定input_shape 输出shape 与输入shape相同 ---- Dropout层 keras.layers.core.Dropout...keras.layers.core.Permute(dims) Permute层将输入的维度按照给定模式进行重排,例如,当需要将RNN和CNN网络连接时,可能会用到该层。

    2.1K10

    Deep learning基于theano的keras学习笔记(3)-网络层

    和CNN网络连接时,可能会用到该层。...#例如(2,1)代表将输入的第二个维度重拍到输出的第一个维度,而将输入的第一个维度重排到第二个维度 1.8 RepeatVector层 RepeatVector层将输入重复n次 keras.layers.core.RepeatVector...层 本函数用以对上一层的输出施以任何Theano/TensorFlow表达式 keras.layers.core.Lambda(function, output_shape=None, arguments...需要反卷积的情况通常发生在用户想要对一个普通卷积的结果做反方向的变换。例如,将具有该卷积层输出shape的tensor转换为具有该卷积层输入shape的tensor。,同时保留与卷积层兼容的连接模式。...='th') #对2D输入(如图片)的边界填充0,以控制卷积以后特征图的大小 #ZeroPadding3D层 keras.layers.convolutional.ZeroPadding3D(padding

    1.2K20

    Deep learning基于theano的keras学习笔记(1)-Sequential模型

    Sequential模型,顾名思义,就是多个网络层的线性堆叠 建立模型有两种方式:一是向layer添加list的方式,二是通过.add()方式一层层添加(一个add为一层),具体可见如下代码 #引入...传递一个batch_input_shape的关键字参数给第一层,该参数包含数据的batch大小。该参数在指定固定大小batch时比较有用。...事实上,Keras在内部会通过添加一个None将input_shape转化为batch_input_shape 有些2D层,如Dense,支持通过指定其输入维度input_dim来隐含的指定输入数据...一些3D的时域层支持通过参数input_dim和input_length来指定输入shape。...#verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录 #validation_data:具有以下三种形式之一 生成验证集的生成器

    1.4K10

    四个用于Keras的很棒的操作(含代码)

    所有Keras损失和度量的定义方式与具有两个输入变量的函数相同:地面真值(ground truth)和预测值,函数始终返回度量或损失的值。...我定义了call()函数的第一个输入为x(即图像张量),和第二个输入(可选)method(这是我要选择的调整大小的方法。调整的scale被定义在初始化函数__init__内 。...但是,如果你想直接使用这些模型,需要事先调整图像大小,因为最后完全连接层会强制固定输入大小。例如,Xception模型使用299×299的图像进行训练,那么所有图像都必须设置为大小以避免错误。...除此之外,模型可能会有一些其他类型的你希望在向模型传递图像时自动应用它们的预处理或后处理。 我们可以使用Keras的Lambda层在模型中内置任何数学或预处理操作!...lambda将简单地定义你要应用的操作。全层Lambda允许你将功能完全融入模型中。查看下面的代码,了解我们如何在模型中嵌入重新调整大小以及Xception的预处理!

    3.1K40

    模型层layers

    ,我们也可以通过编写tf.keras.Lambda匿名模型层或继承tf.keras.layers.Layer基类构建自定义的模型层。...其中tf.keras.Lambda匿名模型层只适用于构造没有学习参数的模型层。 二,内置layers 一些常用的内置模型层简单介绍如下。 基础层 Dense:密集连接层。...仅有SeparableConv2D前半部分操作,即只操作区域,不操作通道,一般输出通道数和输入通道数相同,但也可以通过设置depth_multiplier让输出通道为输入通道的若干倍数。...具有携带轨道,遗忘门,更新门,输出门。可以较为有效地缓解梯度消失问题,从而能够适用长期依赖问题。设置return_sequences = True时可以返回各个中间步骤输出,否则只返回最终输出。...GRU:门控循环网络层。LSTM的低配版,不具有携带轨道,参数数量少于LSTM,训练速度更快。 SimpleRNN:简单循环网络层。容易存在梯度消失,不能够适用长期依赖问题。一般较少使用。

    1.4K20

    keras doc 5 泛型与常用层

    ,包括全连接、激活层等 泛型模型接口 为什么叫“泛型模型”,请查看一些基本概念 Keras的泛型模型为Model,即广义的拥有输入和输出的模型,我们使用Model来初始化一个泛型模型 from keras.models...这种情况下请确定在编译模型时添加了sample_weight_mode='temporal'。...参考激活函数 输入shape 任意,当使用激活层作为第一层时,要指定input_shape 输出shape 与输入shape相同 ---- Dropout层 keras.layers.core.Dropout...keras.layers.core.Permute(dims) Permute层将输入的维度按照给定模式进行重排,例如,当需要将RNN和CNN网络连接时,可能会用到该层。...node_indices:可选,为整数list,如果有些层具有多个输出节点(node)的话,该参数可以指定需要merge的那些节点的下标。

    1.7K40

    Fast-SCNN的解释以及使用Tensorflow 2.0的实现

    这里,所有3个层都使用2的stride和3x3的内核大小。 现在,让我们首先实现这个模块。首先,我们安装Tensorflow 2.0。我们可以简单地使用谷歌Colab并开始我们的实现。...为此,为了使过程简单和可重用,我创建了一个自定义函数,它将检查我想要添加的层是一个Conv2D层还是深度可分离层,然后检查我是否想在层的末尾添加relu。...在point-wise卷积输出中不添加激活,激活是在这两个输入相加后引入的。 ?...这里需要注意的是,在原论文中,没有提到在point-wise卷积层之后添加上采样和Dropout层,但在本文的后面部分描述了这些层是在 point-wise卷积层之后添加的。...为了创建模型,如上所述,我们使用了来自TF.Keras的函数api。这里,模型的输入是学习下采样模块中描述的初始输入层,输出是最终分类器的输出。

    92230

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第16章 使用RNN和注意力机制进行自然语言处理

    首先,创建每个循环层时需要设置stateful=True。第二,有状态RNN需要知道批次大小(因为要为批次中的输入序列保存状态),所以要在第一层中设置batch_input_shape参数。...模型输入是2D张量,形状为 [批次大小, 时间步] ,嵌入层的输出是一个3D张量,形状为 [批次大小, 时间步, 嵌入大小] 。...每个层处理遮掩的方式不同,但通常会忽略被遮掩的时间步(遮掩为False的时间步)。例如,当循环神经层碰到被遮掩的时间步时,就只是从前一时间步复制输出而已。...出于效率的考量,在构造器中先计算出位置嵌入(因此需要知道最大句子长度,max_steps,每个词表征的维度,max_dims)。然后调用call()方法裁剪嵌入矩阵,变成输入的大小,然后添加到输入上。...因为创建位置嵌入矩阵时,添加了一个大小为1的维度,广播机制可以确保位置矩阵添加到输入中的每个句子上: class PositionalEncoding(keras.layers.Layer):

    1.8K21

    Fast-SCNN的解释以及使用Tensorflow 2.0的实现

    这里,所有3个层都使用2的stride和3x3的内核大小。 现在,让我们首先实现这个模块。首先,我们安装Tensorflow 2.0。我们可以简单地使用谷歌Colab并开始我们的实现。...为此,为了使过程简单和可重用,我创建了一个自定义函数,它将检查我想要添加的层是一个Conv2D层还是深度可分离层,然后检查我是否想在层的末尾添加relu。...在point-wise卷积输出中不添加激活,激活是在这两个输入相加后引入的。...这里需要注意的是,在原论文中,没有提到在point-wise卷积层之后添加上采样和Dropout层,但在本文的后面部分描述了这些层是在 point-wise卷积层之后添加的。...为了创建模型,如上所述,我们使用了来自TF.Keras的函数api。这里,模型的输入是学习下采样模块中描述的初始输入层,输出是最终分类器的输出。

    46110

    《python数据分析与挖掘实战》笔记第2章

    保存作图图像时,负号有可能显示不正常,可以通过以下代码解决: plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题 这里有一个小建议给读者...有必要介绍一下Theano,它也是python的一个库,用来定义、优化和高效的解决多维数组数据对应数学表达式的模拟估计问题。...它具有高效地实现符号分解、高度优化的速度和稳定性等特点,最重要的是它还实现了GPU加速,使得密集型数据的处理速度是CPU的数十倍。...用Theano就可以搭建起高效的神经网络模型,但是对于普通读者来说门槛还是相当高的,keras正是为此而生,它大大简化了搭建各种神经网络模型的步骤,允许普通用户轻松的搭建并求解具有几百个输入节点的深层神经网络...(Dense(20,64)) # 添加输入层(20节点)、第一隐藏层(64节点)的连接 model.add(Activation('tanh')) # 第一隐藏层用tanh作为激活函数 model.add

    1.1K10

    畅游人工智能之海 | Keras教程之Keras的知识结构

    Model类模型(使用Keras函数式API)  Keras函数式API是定义复杂模型(如多输出模型、有向无环图、或具有共享层的模型)的方法。 ...要明确三点:①网络层的实例是可调用的,它以张量为参量,并返回一个张量;②输入和输出均为张量,它们都可以用来定义一个模型(Model);③这样的模型可被训练。 ...可以大大减少特征位置对分类带来的影响;还有Activation层,它将激活函数应用于输出;还有Dropout层,它在每次更新时随机丢弃一部分输入,有助于防止过拟合。...卷积层负责对输入数据进行特征提取,不同的卷积层提取不同的特征,使神经网络对于数据的每个特征都进行局部感知。  池化层  池化层包含各种最大池化网络层和平均池化网络层。...局部连接层  局部连接层与卷积层工作方式相同,除了权值不共享之外,它在输入的每个不同部分应用不同的一组过滤器。分为1D和2D类。  循环层  该层主要包含RNN和LSTM相关的类。

    1.1K30

    入门 | 十分钟搞定Keras序列到序列学习(附代码实现)

    本文中,作者将尝试对这一问题做出简短解答;本文预设你已有一些循环网络和 Keras 的使用经验。...次要案例:当输入序列和输出序列长度相同 当输入序列和输出序列长度相同时,你可以通过 Keras LSTM 或者 GRU 层(或者其中的堆栈)简单地实现模型。...这一实例脚本中的案例展示了如何教会 RNN 学习添加被编码为字符串的数字: ? 一般案例:标准的 Seq2Seq 一般情况下,输入序列和输出序列有不同的长度(比如机器翻译)。...在推理模式中,即当要解码未知的输入序列,我们完成了一个稍微不同的处理: 把输入序列编码进状态向量 从大小为 1 的目标序列开始 馈送状态向量和 1 个字符的目标序列到解码器从而为下一字符生成预测 通过这些预测采样下一个字符...我们的模型使用 teacher forcing。 3. 解码一些语句以检查模型正在工作。 由于训练过程和推理过程(解码语句)相当不同,我们使用了不同的模型,虽然两者具有相同的内在层。

    1.4K120

    干货|深度学习中的正则化技术概述(附Python+keras实现代码)

    代价函数=损失(比如二元交叉熵)+正则项 由于添加了正则项,使得加权矩阵的值减小--得益于它假定具有更小权重矩阵的神经网络产生更简单的模型,故它也会在一定程度上减少过拟合。...这个正则项在L1和L2中是不同的。 在L2中,我们有: ? 这里的lambda是正则项惩罚数。它是一个超参数。它的值可以被优化以获得更好的结果。...这里是惩罚权重的绝对值。与L2不同,这里的权重可以减少到零。因此,当我们试图压缩我们的模型时,它非常有用。其他的情况下,我们通常更喜欢L2。 在keras,我们可以对每一层进行正则化。...在每次迭代中,它随机选择一些节点,并将它们连同它们的所有传入和传出连接一起删除,如下图所示。 ? 所以每次迭代都有一组不同的节点,这导致了一组不同的输出。...选择丢弃节点的比率是dropout函数中的超参数。如上图所示,dropout可以应用于隐藏层以及输入层。 ?

    1.9K20

    keras doc 8 BatchNormalization

    参数 sigma:浮点数,代表要产生的高斯噪声标准差 输入shape 任意,当使用该层为模型首层时需指定input_shape参数 输出shape 与输入相同 ---- GaussianDropout层...keras.layers.noise.GaussianDropout(p) 为层的输入施加以1为均值,标准差为sqrt(p/(1-p)的乘性高斯噪声 因为这是一个起正则化作用的层,该层只在训练时才有效...参数 p:浮点数,断连概率,与Dropout层相同 输入shape 任意,当使用该层为模型首层时需指定input_shape参数 输出shape 与输入相同 参考文献 Dropout: A Simple...但对于任何具有可训练权重的定制层,你应该自己来实现。...Keras1.0不再使用布尔值train来控制训练状态和测试状态,如果你的层在测试和训练两种情形下表现不同,请在call中使用指定状态的函数。

    1.3K50

    TensorFlow 2.0 的新增功能:第一、二部分

    在不同的基础媒体类型和模型架构中,此问题始终存在。 当代的解决方案是使用最大记录的大小,对较小的记录使用填充。...随着机器学习任务的日益成熟,具有多阶段输入和输出的模型变得越来越普遍。...大量实际使用案例涉及具有多阶段输入和输出的模型。 具有多个输入的真实世界模型的一个示例是文本分类模型,该模型可以查看输入文本中的单词和字符序列。...但是,此过程的局限性在于它不存储有关训练过程的任何信息。 为了更好地理解这一点,让我们看一个例子。 考虑一个具有一个输入层,一个隐藏层和一个输出层的简单模型。...(0.5)) 另外,添加Flatten层: model.add(tf.keras.layers.Flatten()) 添加具有 10 个输出单元的softmax层: model.add(tf.keras.layers.Dense

    3.7K10
    领券