首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用Pandas进行数据清理的入门示例

数据清理是数据分析过程中的关键步骤,它涉及识别缺失值、重复行、异常值和不正确的数据类型。获得干净可靠的数据对于准确的分析和建模非常重要。...本文将介绍以下6个经常使用的数据清理操作: 检查缺失值、检查重复行、处理离群值、检查所有列的数据类型、删除不必要的列、数据不一致处理 第一步,让我们导入库和数据集。...Pandas提供字符串方法来处理不一致的数据。 str.lower() & str.upper()这两个函数用于将字符串中的所有字符转换为小写或大写。...包含了丰富的函数和方法集来处理丢失的数据,删除重复的数据,并有效地执行其他数据清理操作。...使用pandas功能,数据科学家和数据分析师可以简化数据清理工作流程,并确保数据集的质量和完整性。 作者:Python Fundamentals

27760

你必须知道的Pandas 解析json数据的函数-json_normalize()

前言:Json数据介绍 Json是一个应用及其广泛的用来传输和交换数据的格式,它被应用在数据库中,也被用于API请求结果数据集中。...JSON对象列表 采用[]将JSON对象括起来,形成一个JSON对象的列表,JSON对象中同样会有多层{},也会有[]出现,形成嵌套列表 这篇文章主要讲述pandas内置的Json数据转换方法json_normalize...- 为嵌套列表数据和元数据添加前缀- 通过URL获取Json数据并进行解析- 探究:解析带有多个嵌套列表的Json json_normalize()函数参数讲解 |参数名|解释 |------ |data...|未解析的Json对象,也可以是Json列表对象 |record_path|列表或字符串,如果Json对象中的嵌套列表未在此设置,则完成解析后会直接将其整个列表存储到一列中展示 |meta|Json对象中的键...此时,我们需要先根据多个嵌套列表的key将Json解析成多个DataFrame,再将这些DataFrame根据实际关联条件拼接起来,并去除重复值。 json_obj = {<!

3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas中的数据分类

    公众号:尤而小屋 作者:Peter 编辑:Pete 大家好,我是Peter~ 本文中介绍的是Categorical类型,主要实现的数据分类问题,用于承载基于整数的类别展示或编码的数据,帮助使用者获得更好的性能和内存使用...--MORE--> 背景:统计重复值 在一个Series数据中经常会出现重复值,我们需要提取这些不同的值并且分别计算它们的频数: import numpy as np import pandas as...pandas.core.series.Series Categorical类型创建 生成一个Categorical实例对象 通过例子来讲解Categorical类型的使用 subjects = ["语文...Categorical对象 通过pandas.Categorical来生成 通过构造函数from_codes,前提是你必须先获得分类编码数据 # 方式1 df2["subject"] = df2[...,也就是one-hot编码(独热码);产生的DataFrame中不同的类别都是它的一列,看下面的例子: data4 = pd.Series(["col1","col2","col3","col4"] \

    8.6K20

    Pandas中的数据转换

    import pandas as pd import numpy as np 一、⭐️apply函数应用 apply是一个自由度很高的函数 对于Series,它可以迭代每一列的值操作: df = pd.read_csv...中的axis参数=0时,永远表示的是处理方向而不是聚合方向,当axis='index'或=0时,对列迭代对行聚合,行即为跨列,axis=1同理 二、⭐️矢量化字符串 为什么要用str属性 文本数据也就是我们常说的字符串...,Pandas 为 Series 提供了 str 属性,通过它可以方便的对每个元素进行操作。...Series中的每个字符串 slice_replace() 用传递的值替换每个字符串中的切片 count() 计数模式的发生 startswith() 相当于每个元素的str.startswith(pat...常用到的函数有:map、apply、applymap。 map 是 Series 中特有的方法,通过它可以对 Series 中的每个元素实现转换。

    13510

    如何正确的清理MySQL中的数据

    如何正确的清理MySQL中的数据 1. 为什么删了数据,表文件大小没有变 1.1 数据删除流程 删除记录,只会将记录标记为删除,表示该位置可以服用。 数据数据页,表示数据页可以复用。...使用 delete 删除所数据,所有的数据页会被标记为可复用,但是磁盘空间的占用没有变化。 1.2 数据空洞 删除,插入等操作会使数据页上出现空元素,也叫做数据空洞。 2....如何避免数据空洞 假设数据表A中存在大量数据空洞,解决的办法就是重建表。 2.1 重建表的流程 建立临时文件,扫描表A主键的所有数据页。 利用表A的记录生成B+树,存储到临时文件X。...生成的临时文件的过程中,所有对表A的操作记录在日志文件中。 临时文件X生成后,将日志文件应用到临时文件,得到新的临时文件 用临时文件 替换表A的数据文件。...2.2 什么是Online DDL 在复制表的同时,将对表的操作,写入日志文件,之后再将日志文件应用到复制文件上,实现复制表的时候,不阻塞其他对表的写入操作,因此称为Online DDL。

    4.7K30

    安利几个pandas处理字典和JSON数据的方法

    字典数据转化为Dataframe类型 2.Dataframe转化为字典数据 3.json数据与Dataframe类型互相转化 4.多层结构字典转化为Dataframe 1....字典数据转化为Dataframe类型 1.1.简单的字典 对于字典数据,直接用pd.Dataframe方法即可转化为Dataframe类型。...我们可以看到,在常规的字典转化为Dataframe时,键转化为了列索引,行索引默认为range(n),其中n为数据长度。我们亦可在进行转化的时候,通过设定参数index的值指定行索引。...数据与Dataframe类型互相转化 方法:**pandas.read_json(*args, kwargs)和to_json(orient=None)一般来说,传入2个参数:data和orient !...0 1 0 1 0.50 1 2 0.75 4.多层结构字典转化为Dataframe 方法:pandas.json_normalize()对于普通的多级字典如下: In [38]

    3.4K20

    你必须知道的Pandas 解析json数据的函数

    前言:Json数据介绍 Json是一个应用及其广泛的用来传输和交换数据的格式,它被应用在数据库中,也被用于API请求结果数据集中。...JSON对象列表 采用[]将JSON对象括起来,形成一个JSON对象的列表,JSON对象中同样会有多层{},也会有[]出现,形成嵌套列表 这篇文章主要讲述pandas内置的Json数据转换方法json_normalize...- 为嵌套列表数据和元数据添加前缀- 通过URL获取Json数据并进行解析- 探究:解析带有多个嵌套列表的Json json_normalize()函数参数讲解 在进行代码演示前先导入相应依赖库,未安装...pandas库的请自行安装(此代码在Jupyter Notebook环境中运行)。...此时,我们需要先根据多个嵌套列表的key将Json解析成多个DataFrame,再将这些DataFrame根据实际关联条件拼接起来,并去除重复值。 json_obj = {<!

    1.8K20

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。

    28030

    iOS中JSON数据的解析 原

    iOS中JSON数据解析 官方为我们提供的解析JSON数据的类是NSJSONSerialization,首先我们先来看下这个类的几个方法: + (BOOL)isValidJSONObject:(id)...obj; 判断一个数据对象是否可以转化为JSON数据 + (NSData *)dataWithJSONObject:(id)obj options:(NSJSONWritingOptions)opt error...:(NSError **)error; 将JSON数据写为NSData数据,其中opt参数的枚举如下,这个参数可以设置,也可以不设置,如果设置,则会输出视觉美观的JSON数据,否则输出紧凑的JSON数据...JSONObjectWithData:(NSData *)data options:(NSJSONReadingOptions)opt error:(NSError **)error; 这个方法是解析中数据的核心方法...,data是JSON数据对象,可以设置一个opt参数,具体用法如下: typedef NS_OPTIONS(NSUInteger, NSJSONReadingOptions) {     //将解析的数组和字典设置为可变对象

    2.4K50

    tcpip模型中,帧是第几层的数据单元?

    在网络通信的世界中,TCP/IP模型以其高效和可靠性而著称。这个模型是现代互联网通信的基石,它定义了数据在网络中如何被传输和接收。其中,一个核心的概念是数据单元的层级,特别是“帧”在这个模型中的位置。...在这一层中,数据被封装成帧,然后通过物理媒介,如有线或无线方式,传输到另一端的设备。那么,帧是什么呢?帧可以被看作是网络数据传输的基本单位。...在网络接口层,帧的处理涉及到各种协议和标准。例如,以太网协议定义了在局域网中帧的结构和传输方式。这些协议确保了不同厂商生产的网络设备可以相互协作,数据可以在各种网络环境中顺利传输。...但是,对帧在TCP/IP模型中的作用有基本的理解,可以帮助开发者更好地理解数据包是如何在网络中传输的,以及可能出现的各种网络问题。...客户端则连接到这个服务器,并接收来自服务器的消息。虽然这个例子中的数据交换看似简单,但在底层,TCP/IP模型中的网络接口层正通过帧来传输这些数据。

    30210

    Python+pandas分离Excel数据到同一个Excel文件中多个Worksheets

    封面图片:《Python程序设计(第2版)》,董付国,清华大学出版社 =============== 问题描述: 已知文件“超市营业额2.xlsx”中结构与部分数据如图所示: ?...第1步比较简单,使用pandas的read_excel()函数读取Excel文件即可。 对于第2步,需要首先获取所有员工的唯一姓名,然后使用DataFrame结构的布尔运算也很容易分离。...对于第3步,需要使用DataFrame结构的to_excel()方法来实现,把第2步中分离得到的每位员工的数据写入同一个Excel文件的不同Worksheet中,该方法语法为: to_excel(excel_writer...第3步的要点是,to_excel()方法的第一个参数不能使用Excel文件路径,因为每次写入时会覆盖原来Excel文件中的内容。如果代码写成下面的样子: ?...代码可以运行,但是结果Excel文件中只有最后一次写入的数据,如图: ? 对于本文描述的需要,需要为to_excel()方法第一个参数指定为ExcelWriter对象,正确代码如下: ?

    2.4K10

    【Android 高性能音频】Oboe 开发流程 ( Oboe 音频帧简介 | AudioStreamCallback 中的数据帧说明 )

    文章目录 一、音频帧概念 二、AudioStreamCallback 中的音频数据帧说明 Oboe GitHub 主页 : GitHub/Oboe ① 简单使用 : Getting Started...; 在 【Android 高性能音频】Oboe 开发流程 ( Oboe 完整代码示例 ) 中展示了一个 完整的 Oboe 播放器案例 ; 一、音频帧概念 ---- 帧 代表一个 声音单元 , 该单元中的...类型 ; 上述 1 个音频帧的字节大小是 2\times 2 = 4 字节 ; 二、AudioStreamCallback 中的音频数据帧说明 ---- 在 Oboe 播放器回调类 oboe::...AudioStreamCallback 中 , 实现的 onAudioReady 方法 , 其中的 int32_t numFrames 就是本次需要采样的帧数 , 注意单位是音频帧 , 这里的音频帧就是上面所说的...numFrames 乘以 8 字节的音频采样 ; 在 onAudioReady 方法中 , 需要 采集 8 \times numFrames 字节 的音频数据样本 , 并将数据拷贝到 void

    12.2K00

    python读取txt文件中的json数据

    大家好,又见面了,我是你们的朋友全栈君。 txt文本文件能存储各式各样数据,结构化的二维表、半结构化的json,非结构化的纯文本。...存储在excel、csv文件中的二维表,都是可以直接存储在txt文件中的。 半结构化的json也可以存储在txt文本文件中。...最常见的是txt文件中存储一群非结构化的数据: 今天只学习:从txt中读出json类型的半结构化数据 import pandas as pd import json f = open("...../data/test.txt","r",encoding="utf-8") data = json.load(f) 数据读入完成,来看一下data的数据类型是什么?...print(type(data)) 输出的结果是:dict 如果你分不清dict和json,可以看一下我的这篇文章 《JSON究竟是个啥?》

    7.2K10
    领券