展开

关键词

游戏数据分析

游戏数据分析的整体思路 第一步;数据文件获取(1.导入数据 2.查询结构 3.更改结构 4.汇总变量信息); 第二步;数据预处理(1.剔除缺失值2.变量转换与衍生 3.读出处理好的数据观察和可视化4.汇总变量类型 (2)游戏产品的高频使用用户的定义:是否游戏高频用户的定义:对游戏使用量进行中位数划分,如果大于中位数是高频用户,低于中位数是低频用户 上述数据源可用于分析的问题面有: (0): 高频游戏用户和低频游戏用户的影响因素是什么 : (1)游戏投资商可对高频用户的游戏类型进行投资 (2)游戏产品的市场面对群体的普及主要针对哪个市场 (3)游戏产品的市场面对哪类游戏受喜好的人多 分析目标:高频游戏用户的影响因素是什么? 用户相关性计算,选择的是皮尔逊相关系数,主要选择的是数值型数据进行相关性分析数据处理 1. 在Tableau和R中分析,哪些属性值可以不分析(删除) 无关变量: 游戏名称 /用户得分,这两个变量属性属于无关变量,可进行删除。 2.

54131

数据分析】TalkingData:游戏数据分析流程

文/ 于洋 TalkingData高级咨询总监 1.3 游戏数据分析的流程 游戏数据分析整体的流程将分为几个阶段,这几个阶段则是反映了不同企业数据分析的水平,从另一个角度,也是在解析作为一名数据分析人员究竟该如何参与到游戏数据分析业务中 方法论存在的意义就是要去解决问题,是对于问题、目标、方法和工具的概述。一方面解决业务问题,另一方面则是分析思维的指导。 从图1-2我们也可以看到,方法论的确立,决定了我们在游戏数据分析方向上要解决的问题、采取的方法和使用的工具等。 数据埋点就是通过客户端或者服务端,通过在某些游戏位置追踪玩家游戏行为而得到的相关数据。这些位置则是未来对特定业务分析的基础数据支撑。 (1)业务理解 系统最终是需要技术开发的,在选定技术和工具之前,最重要的是要充分理解需求和标准定义。

1.3K81
  • 广告
    关闭

    游戏加速分发场景解决方案

    帮助解决游戏内的卡顿和高延时现象,为玩家提供更好的游戏体验

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    游戏数据分析的艺术》之游戏数据分析的流程(下)

    可以预见的是,当数据分析由系统来实现时,我们需要对关键业务具备数据的归纳和业务分析的模型组织,比如在游戏数据分析中,我们会针对鲸鱼做分析,对留存做专门的分析。这些都是通过业务的提炼才得以实现的。 在如今移动游戏市场,服务于第三方游戏统计分析服务的平台提供了标准的数据接口,从数据采集的角度,我们可以确立如图1-7所示的标准统计接口。 ? 1.3.5建议方案 前面几个过程是从数据平台、标准分析系统、产品运营和精细化几个关键词在描绘游戏数据分析的流程,而数据分析的最终是要形成方案或者决策指导,因为分析结果体现不了价值,最终还是要和业务结合, 在以往的游戏数据分析领域,我们会发现,经过数据分析后,方案一旦形成,我们很难将这个方案执行下去,并且无法评估最终的效果,因为在整个数据分析环节中,参与的部门的人员众多,数据分析结果与方案执行往往很难做到一致 4、回复“可视化”查看数据可视化专题-数据可视化案例与工具 5、回复“禅师”查看当禅师遇到一位理科生,后来禅师疯了!!

    671100

    游戏数据分析的艺术》之游戏数据分析的流程(上)

    来源:TalkingData 1.3 游戏数据分析的流程 游戏数据分析整体的流程将分为几个阶段,这几个阶段则是反映了不同企业数据分析的水平,从另一个角度,也是在解析作为一名数据分析人员究竟该如何参与到游戏数据分析业务中 方法论存在的意义就是要去解决问题,是对于问题、目标、方法和工具的概述。一方面解决业务问题,另一方面则是分析思维的指导。 从图1-2我们也可以看到,方法论的确立,决定了我们在游戏数据分析方向上要解决的问题、采取的方法和使用的工具等。 图1-3游戏数据加工流程 在数据加工阶段,我们重点要去解决的问题有两点。 (1)业务理解 系统最终是需要技术开发的,在选定技术和工具之前,最重要的是要充分理解需求和标准定义。 4、回复“可视化”查看数据可视化专题-数据可视化案例与工具 5、回复“禅师”查看当禅师遇到一位理科生,后来禅师疯了!!

    1K70

    数据分析游戏 数据分析的维度、方法

    1.1常规数据分析(设定指标,定期监测) 1.1.1常规数据分析维度 1.1.1.1宏观方面 对宏观指标进行监控(小时、天、周、月、季度、年等),发现异常(人数掉线、新增用户增长异常、ARPU升高等 ),给公司提供客观的数据来衡量和判断游戏的运营情况 1.1.1.1.1用户数量 ? ,销量排行) 1.1.1.2.2ACG游戏 职业等级分布 资源使用统计 排名统计(增加荣誉感) 1.1.2常规数据分析方法 1.1.2.1对比分析法 各运营核心指标,例如:人气(平均在线人数 [每个活跃用户每天在线时长、每个活跃用户ARPU] 1.2专题数据挖掘(更深入了解游戏用户的行为)基于目前游戏行业快速增长的行业背景,游戏市场远远没有达到饱和状态。 1.3用户调研(设计问卷、开展调研)用户调研其实在游戏数据分析工作处在一个边缘的位置,很多玩家不清楚自己想要什么,所以某种程度上我们来做这种调研工作往往会得到错误的玩家信号,所以很少会用调研手段来分析玩家

    2.7K90

    美国Appstore游戏数据分析

    周末在家爬取了各类别最热门的2000款美国Appstore的游戏的相关数据,包括公司名称、游戏名称、评分人数、星级,简单分析了下发现一些有趣的东西。 (注:该处是美国的Appstore,中国的数据不一样)。 截止2016年7月底,最受欢迎(最多人评分)的游戏不是我们熟知的糖果粉碎传奇、愤怒的小鸟或者是水果忍者,而是这款 ? 通过游戏赚取的金币可以解锁新角色,另外游戏还有一个亮点是每一关的地图都是随机生成的。 从游戏公司来看,发行的游戏数量 Top3 的游戏公司有以下数据: ? ? ? 另外有一家公司也想提一下,他是开发了《植物大战僵尸》的 Popcap ? 这家公司只有5款游戏名列2000款最受欢迎游戏里,但每款都很火,平均评分人数达到22w。 除了《植物大战僵尸》,他家的三消游戏《宝石迷阵》也大受欢迎。 ?

    65980

    【性能分析】大数据分析工具

    数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。 在大数据和大数据分析,他们对企业的影响有一个兴趣高涨。大数据分析是研究大量的数据的过程中寻找模式,相关性和其他有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。 该项目将会创建出开源版本的谷歌Dremel Hadoop工具(谷歌使用该工具来为Hadoop数据分析工具的互联网应用提速)。 “Drill”项目其实也是从谷歌的Dremel项目中获得灵感:该项目帮助谷歌实现海量数据集的分析处理,包括分析抓取Web文档、跟踪安装在Android Market上的应用程序数据分析垃圾邮件、分析谷歌分布式构建系统上的测试结果等等 BI 平台包含组件和报表,用以分析这些流程的性能。目前,Pentaho的主要组成元素包括报表生成、分析数据挖掘和工作流管理等等。

    9540

    游戏数据实时监控和分析

    概述 为了更好的了解到游戏运行时的状态,对相关的功能和数据进行分析是很重要的,设计了本系统。 现有的游戏数据大部分采用的是文本输出,备份,然后离线数据分析的方式,不能实时的监控的游戏的状态. 相关技术: 1:产生日志服务器采用c++ 实现 2:日志监控服务器采用Java 实现 3: 采用hadloop分布式架构.为应付大规模数据和实时的要求,尽快对数据进行分析 4: 存储日志采用mongodb 架构图: 实现的难点: 1:日志直接入mongodb数据库,安全性和性能直接的权衡,以及那些日志入库和是不是要采用缓冲 2:不同用户的需求,日志分析服务器map,reduce实现的通用和性能权衡。

    8130

    腾讯云游戏数据分析概览

    游戏数据分析 每一个游戏制作者都想制作出一款让玩家满意的游戏。但是作为开发者,如何知道哪些点是让游戏玩家满意的,哪些是不满意的?今天我们就聚焦这些点来进行讨论。 没有什么是比从实际玩家那里收集真实数据来更好的了解玩家行为了,比如: 参与度数据可以帮助了解玩家在游戏中的时长 游戏内的数据可以调整和平衡游戏的难度 数据分析能够让游戏制作者做出明智的决定,这些决策都是由数据驱动的 使用开源工具直接上报至 CKafka 中,Ckafka 可以接入多个消费者来根据不同维度来消费数据。 结论 以上就是腾讯云在游戏数据分析领域的赋能,了解玩家的行为吸引玩家,留住他们并最终创造出有趣的游戏是至关只要的。 通过腾讯云提供丰富的分析服务来分析复杂的数据,可以轻松地从中找到答案,让开发者更专注于制作出色的游戏

    1.5K70

    Python工具分析风险数据

    小安前言 随着网络安全信息数据大规模的增长,应用数据分析技术进行网络安全分析成为业界研究热点,小安在这次小讲堂中带大家用Python工具对风险数据作简单分析,主要是分析蜜罐日志数据,来看看一般大家都使用代理 数据分析工具介绍 工欲善其事,必先利其器,在此小安向大家介绍一些Python数据分析的“神兵利器“。 Python中著名的数据分析库Panda Pandas库是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建,也是围绕着 Series 和 DataFrame 两个核心数据结构展开的,其中Series 我们有了这些“神兵利器“在手,下面小安将带大家用Python这些工具对蜜罐代理数据作一个走马观花式的分析介绍。 1 引入工具–加载数据分析包 启动IPython notebook,加载运行环境: ? 当然了用Pandas提供的IO工具你也可以将大文件分块读取,再此小安测试了一下性能,完整加载约21530000万条数据也大概只需要90秒左右,性能还是相当不错。

    42290

    数据分析】如何用商业思维分析游戏用户行为数据

    第1步:看整体数据,主要看整体数据有何异常,以及哪些数据的趋势较好(例如,整体数据游戏人数稳定,月收入对比极端) 第2步:看细分数据(例如,细分数据游戏新增用户和流失活跃付费用户成正比,新增用户不付费 ,大R流失严重) 第3步:结合数据分析(例如,分析数据,付费玩家为什么流失? 如果不 能,则用户重返渠道(其他游戏),那你无疑只能继续守株待兔,恳求渠道施舍流量,这无疑是失败的。 当然,我们无法从别人后台调取数据,那么一般从哪里看其他游戏数据走向呢? 用商业思维看行为数据 行为数据,即用户行为占有率,例如活跃度,留存率,付费率… 商业思维,即利益分析,例如用户周期价值,用户可挖掘价值的探索性… 例如,两个公会冲突,游戏内打得火热,公会成员拼活跃 很简单的一次用户行为,很常见的用户行为数据,换个角度分析,或许就是一场商业营销! 5.

    64780

    图解数据分析 | 数据分析工具地图

    ,各界也出现了许多好用的功能种类丰富的数据分析工具。 下方是数据分析常用R库: 方向 R库 数据处理 lubridata,dplyr,ply,reshape2,string,formatR,mcmc 统计 方差分析 aov anova 密度分析 density www.bilibili.com/video/BV1uL411s7bt B站视频教程:https://www.bilibili.com/video/BV1Jg411F7cS Microsoft Excel是数据分析中使用最广泛的工具之一 六、Apache Spark 官网:https://spark.apache.org/ 最大的大型数据处理引擎之一,该工具在Hadoop集群中执行应用程序的内存速度快100倍,磁盘速度快10倍,该工具数据管道和机器学习模型开发中也很流行 七、SAS 官网:https://www.sas.com/zh_cn/home.html SAS是用于数据处理和分析的编程语言和环境,该工具易于访问,并且可以分析来自不同来源的数据

    15540

    数据分析工具篇——数据读写

    数据分析的本质是为了解决问题,以逻辑梳理为主,分析人员会将大部分精力集中在问题拆解、思路透视上面,技术上的消耗总希望越少越好,而且分析的过程往往存在比较频繁的沟通交互,几乎没有时间百度技术细节。 因此,熟练常用技术是良好分析的保障和基础。 笔者认为熟练记忆数据分析各个环节的一到两个技术点,不仅能提高分析效率,而且将精力从技术中释放出来,更快捷高效的完成逻辑与沟通部分。 本文基于数据分析的基本流程,整理了SQL、pandas、pyspark、EXCEL(本文暂不涉及数据建模、分类模拟等算法思路)在分析流程中的组合应用,希望对大家有所助益。 2、分批读取数据: 遇到数据量较大时,我们往往需要分批读取数据,等第一批数据处理完了,再读入下一批数据,python也提供了对应的方法,思路是可行的,但是使用过程中会遇到一些意想不到的问题,例如:数据多批导入过程中 如上即为数据的导入导出方法,笔者在分析过程中,将常用的一些方法整理出来,可能不是最全的,但却是高频使用的,如果有新的方法思路,欢迎大家沟通。

    34030

    如何选择数据分析工具

    一个得心应手的数据分析工具,是每一位从业人员做数据分析的利器。 面对浩如烟海的数据,如何选择合适的数据分析工具,成为运营、产品、市场等职能部门人员的一个难题,运用用数据分析工具,企业可以整合多种渠道的数据,快速完成和完善数据分析。那么如何选择数据分析工具呢? 所以,在选择数据分析工具时,最好选择一种详尽、全面的工具分析指标,使结果更具深度,这样才能满足用户的要求,才能借助数据分析工具挖掘出所有数据背后的真正意义。 (4)跨部门合作 对大型企业来说,数据分析工具必须支持跨部门合作才行。数据分析工具在不同的部门有不同的需求和用途。 (5)性价比和维护成本 大多数工具(特别是企业级数据分析工具)在使用之前都需要花费一些费用。所以在选择数据分析工具时,我们需要考虑购买初期的费用和后期的维护费用。

    3591614

    谈谈游戏数据分析的那点事

    游戏数据分析的意义 对于一款游戏产品来讲,游戏数据分析是非常必要的。 游戏数据分析的流程 对于游戏数据分析系统及数据的利用,分为了五个阶段:方法论、数据加工、统计分析、提炼演绎、建议方案。 ? 方法论存在的意义就是要去解决问题,是对于问题、目标、方法和工具的概述。 一方面解决业务问题,另一方面则是分析思维的指导,方法论的确立,决定了我们在游戏数据分析方向上要解决的问题、采取的方法和使用的工具等。 (1) 业务理解 系统最终是需要技术开发的,在选定技术和工具之前,最重要的是要充分理解需求和标准定义。

    89551

    SAP 数据分析工具-1

    数据收集(目前只支持json格式) ? ? 2种方式: API方式:GET/POST获取基础数据 url为服务地址,在服务地址下依次从PLATFORM(平台)/PLATTYPE(分类)/DO_TYPE(活动数据)获取所需的基础数据 RFC方式: 根据约定的sessionid 对应 PLATFORM(平台)/PLATTYPE(分类)/DO_TYPE(活动数据)获取所需的基础数据 ? 存储方式:由一张表实现所有数据类型的加密存储(任意JSON转为内表后存储) ? 程序架构: SAP部分: ? 展示结果: ?

    20230

    Python数据分析 | 数据分析工具库Pandas介绍

    Pandas的名称来自于面板数据(panel data)和python数据分析(data analysis)。 Pandas是Python中最常用到的数据操作和分析工具包,它构建在Numpy之上,具备简洁的使用接口和高效的处理效率。 数据科学、机器学习AI应用过程,涉及数据清洗和分析的操作也频繁使用到Pandas。 当我们提到python数据分析的时候,大部分情况下都会使用Pandas进行操作。 成熟的 IO 工具:读取文本文件(CSV 等支持分隔符的文件)、Excel 文件、数据库等来源的数据,利用超快的 HDF5 格式保存 / 加载数据; 时间序列:支持日期范围生成、频率转换、移动窗口统计

    15440

    【大数据分析】大数据分析方法 及 相关工具

    数据分析的五个基本方面 PredictiveAnalyticCapabilities (预测性分析能力) 数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析数据挖掘的结果做出一些预测性的判断 通过标准化的流程和工具数据进行处理可以保证一个预先定义好的高质量的分析结果。 AnalyticVisualizations ( 可视化 分析) 不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。 SemanticEngines (语义引擎) 我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。 比较典型算法有用于聚类的 K-Means 、用于统计学习的 SVM和用于分类的 Naive Bayes ,主要使用的工具有 Hadoop 的 Mahout 等。

    1.2K80

    rSeq工具:RNA-Seq数据分析工具

    rSeq: RNA-Seq Analyzer rSeq是一组RNA-Seq数据分析工具。它可以处理RNA-Seq数据分析的许多方面,如参考序列生成序列映射,基因和同种型表达式(RPKMs)计算等。

    43940

    游戏数据分析基本思路与方法

    如果某款游戏数据一直良好,某段时间数据突然跌落;是否因为市场宣传力度减弱,是否因为用户生命周期上限,是否因为其他竞品冲击........ 真正的数据分析不在于数据本身,而在于分析能力的概述;数据是参照物,是标杆,只有分析才是行为,是改变;那么如何分析,综合上面两个举例,已经可以很清晰的看到立体式分析。 上图为AARRR模型中的基本数据,结合小白学运营数据篇的系列文章,我们再对以往数据进行总结: 日新增用户数:DNU;每日注册并登陆游戏用户数,主要衡量渠道贡献新用户份额以及质量。 周/月活跃用户:WAU、MAU;截止统计日,周/月登陆游戏用户数,主要衡量周期用户规模,产品粘性,以及产品生命周期性的数据趋势表现。 以上是关于数据的一些概括,对于数据分析,需要我们以理性的眼光对待;因为各家对相关数据定义不同,算法不同;在对数据进行分析时需要我们看清分析误区,综合其他数据进行分析,根据自己的数据分析思路制定相应的分析方案

    1.4K60

    相关产品

    • 智能数据分析

      智能数据分析

      智能数据分析( IDA)基于安全、低成本、高可靠、可弹性的云端大数据架构,帮助企业客户实现从数据采集、建模、挖掘、效果分析、用户标签画像到自动化营销等全场景的数据服务,快速实现数据驱动业务增长的目标。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券