随着对人们活动和传感器的测量,数据类型也在不断增加。而我们要记住:数据,只有经过了分析,变成了信息才有用。 物联网的优势在于它能实时获取、组织数据。 如果架构正确,物联网可以把数据变成有用的信息,用来决定下一步怎么办。 Kristian J. 通过辅以机器的力量,我们可以全自动地从数据中淘金,让冰冷的数字变成感性的认知。“ 如何发现数据的内涵? 物联网之前,分析传感器各式各样的海量数据非常困难。 通过物联网技术,我们可以把机器得到的数据放入数据池自动分析,以决定下一步需要对数据和程序做些什么。物联网不仅收集、分析数据,它还会自我提升。 把数据转化为有用的信息是所有物联网工作的核心,而通过开源软件可以实现这一目标,这有助于加速将物联网付诸实践。
希望这篇文章对你有所帮助,尤其是刚刚接触数据挖掘以及大数据的同学,这些基础知识真的非常重要。如果文章中存在不足或错误的地方,还请海涵~ 一. 关联规则是数据挖掘的一个重要技术,用于从大量数据中挖掘出有价值的数据项之间的相关关系。 关联规则挖掘的最经典的例子就是沃尔玛的啤酒与尿布的故事,通过对超市购物篮数据进行分析,即顾客放入购物篮中不同商品之间的关系来分析顾客的购物习惯,发现美国妇女们经常会叮嘱丈夫下班后为孩子买尿布,30%-40% 2.常见案例 前面讲述了关联规则挖掘对超市购物篮的例子,使用Apriori对数据进行频繁项集挖掘与关联规则的产生是一个非常有用的技术,其中我们众所周知的例子如: 沃尔玛超市的尿布与啤酒 有两个量,置信度(Confidence)和支持度(Support),假如存在如下表的购物记录。 3.2基本概念 关联规则挖掘是寻找给定数据集中项之间的有趣联系。
代金券、腾讯视频VIP、QQ音乐VIP、QB、公仔等奖励等你来拿!
互联网发展至今,数据规模越来越大,数据结构越来越复杂,而且对系统的需求越来越高。 那么图数据挖掘是干什么的呢?难道是开着挖掘机来进行挖掘?还是扛着锄头?下面讲讲什么是图数据挖掘。 一、什么是图数据挖掘 这个话题感觉比较沉重,以至于我敲打每个字都要犹豫半天,这里我说说我对图数据挖掘的理解。数据是一个不可数名字,那么说明数据是一个没有边界的东西。 那么不难理解,数据挖掘就是挖掘数据里面的“宝贝”,图数据挖掘,就是以图的结构来存储、展示、思考数据,以达到挖掘出其中的“宝贝”。那这个“宝贝”是什么? 举个例子吧,例如:当今互联网产生了很多社交数据,某某关注了某某,那么某某和某某就有了关系,某某评论过某某,那么这又产生了关系,在这个里面某某就是图中的节点,而评论过,关注了则是节点之间的关系,如果某某再多点
文|周学春 在银行做了两年的数据分析和挖掘工作,较少接触互联网的应用场景,因此,一直都在思考一个问题,“互联网和金融,在数据挖掘上,究竟存在什么样的区别”。 一、数据挖掘的层次 一直想整理下对数据挖掘不同层次的理解,这也是这两年多的时间里面,和很多金融领域、互联网做数据相关工作的小伙伴,聊天交流的一些整理和归纳。大概可以分为四类。 ? 通过鼠标的托拉拽,流程式的节点,基本上就可以实现你挖掘数据的需求。 傻瓜式操作的优点就是使得数据挖掘,入手非常快,较为简单。但是,也存在一些缺陷,即,使得这个挖掘过程变得有点单调和无趣。 如果你想让你的分析和挖掘比较吸引眼球,请尽量往以上四个方面靠拢。 ? 三、互联网和金融数据挖掘的差异 博士后两年,对银行领域的数据挖掘有些基本的了解和认识,但是面对浩瀚的数据领域,也只能算刚刚入门。 很多时候,会很好奇互联网领域,做数据挖掘究竟是什么样的形态。 很早之前,就曾在知乎上提了个问题,“金融领域的数据挖掘和互联网中的数据挖掘,究竟有什么的差异和不同”。
以下是从网上找的一些相关资料介绍,和即将走上数据挖掘岗位或是想往这方面发展的朋友共享: 数据挖掘从业人员工作分析 1.数据挖掘从业人员的愿景: 数据挖掘就业的途径从我看来有以下几种,(注意:本文所说的数据挖掘不包括数据仓库或数据库管理员的角色 从这个方面切入数据挖掘领域的话你需要学习《数理统计》、《概率论》、《统计学习基础:数据挖掘、推理与预测》、《金融数据挖掘》,《业务建模与数据挖掘》、《数据挖掘实践 》等,当然也少不了你使用的工具的对应说明书了 ),网络日志(网页定制),银行(客户欺诈),电力(客户呼叫),生物(基因),天体(星体分类),化工,医药等方面。 如果你访问著名的亚马逊网上书店会发现当你选中一本书后,会出现相关的推荐数目“Customers who bought this book alsobought”,这背后就是数据挖掘技术在发挥作用。 另外随着金融越来越互联网化,大量的算法工程师会成为以后互联网金融公司紧缺的人才。 大家共勉!
从市场需求及应用的角度来看,通过对大数据的存储、挖掘和分析,大数据在管理、营销、数据标准化等领域大有可为,促使管理/服务水平提升、营销方式改进等。下面我们就来讲讲数据挖掘的那些事。 2聚类分析和模式识别 聚类分析主要是根据事物的特征对其进行聚类或分类,即所谓物以类聚,以期从中发现规律和典型模式。这类技术是数据挖掘的最重要的技术之一。 4人工神经网络和遗传基因算法 人工神经网络是一个迅速发展的前沿研究领域,对计算机科学 人工智能、认知科学以及信息技术等产生了重要而深远的影响,而它在数据挖掘中也扮演着非常重要的角色。 目前在数据挖掘中,最常使用的两种神经网络是BP网络和RBF网络 不过,由于人工神经网络还是一个新兴学科,一些重要的理论问题尚未解决。 5规则归纳 规则归纳相对来讲是数据挖掘特有的技术。 数据挖掘通常会涉及较复杂的数学方法和信息技术,为了方便用户理解和使用这类技术,必须借助图形、图象、动画等手段形象地指导操作、引导挖掘和表达结果等,否则很难推广普及数据挖掘技术。
---- 在银行做了两年的数据分析和挖掘工作,较少接触互联网的应用场景,因此,一直都在思考一个问题,“互联网和金融,在数据挖掘上,究竟存在什么样的区别”。 一直想整理下对数据挖掘不同层次的理解,这也是这两年多的时间里面,和很多金融领域、互联网做数据相关工作的小伙伴,聊天交流的一些整理和归纳。大概可以分为四类。 ? 通过鼠标的托拉拽,流程式的节点,基本上就可以实现你挖掘数据的需求。 傻瓜式操作的优点就是使得数据挖掘,入手非常快,较为简单。但是,也存在一些缺陷,即,使得这个挖掘过程变得有点单调和无趣。 如果你想让你的分析和挖掘比较吸引眼球,请尽量往以上四个方面靠拢。 ? 三、互联网和金融数据挖掘的差异 博士后两年,对银行领域的数据挖掘有些基本的了解和认识,但是面对浩瀚的数据领域,也只能算刚刚入门。 很多时候,会很好奇互联网领域,做数据挖掘究竟是什么样的形态。 很早之前,就曾在知乎上提了个问题,“金融领域的数据挖掘和互联网中的数据挖掘,究竟有什么的差异和不同”。
前面几篇介绍了关联规则的一些基本概念和两个基本算法,但实际在商业应用中,写算法反而比较少,理解数据,把握数据,利用工具才是重要的,前面的基础篇是对算法的理解,这篇将介绍开源利用数据挖掘工具weka进行管理规则挖掘 arff稀疏数据集 我们做关联规则挖掘,比如购物篮分析,我们的购物清单数据肯定是相当稀疏的,超市的商品种类有上10000种,而每个人买东西只会买几种商品,这样如果用矩阵形式表示数据显然浪费了很多的存储空间 ,进行关联规则挖掘时,我们可以先把商品名字映射为id号,挖掘的过程只有id号就是了,到规则挖掘出来之后再转回商品名就是了,retail.txt是一个转化为id号的零售数据集,数据集的前面几行如下: 3、选择关联规则挖掘,选择算法 ? 4、设置参数 ? 来源:www.cnblogs.com/fengfenggirl 系列好文: 数据挖掘系列(1)关联规则挖掘基本概念与Aprior算法 数据挖掘系列(2)--关联规则FpGrowth算法 数据挖掘系列
数据挖掘目前在各类企业和机构中蓬勃发展。因此我们制作了一份此领域常见术语总结,希望你喜欢。 物联网(Internet of Things, IoT): 广泛分布的网络,由诸多种类(个人、家庭、工业)诸多用途(医疗、休闲、媒体、购物、制造、环境调节)的电子设备组成。 机器学习(Machine Learning): 一个学科,研究从数据中自动学习,以便计算机能根据它们收到的反馈调整自身运行。与人工智能、数据挖掘、统计方法关系密切。 文本挖掘(Text Mining): 对包含自然语言的数据的分析。对源数据中词语和短语进行统计计算,以便用数学术语表达文本结构,之后用传统数据挖掘技术分析文本结构。 网络挖掘/网络数据挖掘(Web Mining / Web Data Mining) : 使用数据挖掘技术从互联网站点、文档或服务中自动发现和提取信息。
上一篇介绍了用开源数据挖掘软件weka做关联规则挖掘,weka方便实用,但不能处理大数据集,因为内存放不下,给它再多的时间也是无用,因此需要进行分布式计算,mahout是一个基于hadoop的分布式数据挖掘开源项目 掌握了关联规则的基本算法和使用,加上分布式关联规则挖掘后,就可以处理基本的关联规则挖掘工作了,实践中只需要把握业务,理解数据便可游刃有余。 数据准备 到http://fimi.ua.ac.be/data/下载一个购物篮数据retail.dat。 待续…… 来源:www.cnblogs.com/fengfenggirl 关联好文: 数据挖掘系列(1)关联规则挖掘基本概念与Aprior算法 数据挖掘系列(2)--关联规则FpGrowth算法 数据挖掘系列 (3)--关联规则评价 数据挖掘系列(4)使用weka做关联规则挖掘
---- 概述 最近一直在学习数据挖掘和机器学习,无论是是服务端开发人员还是web开发人员,个人觉得最起码都要都一些最基本的数据挖掘和机器学习知识。废话少说,我们先来学习一下数据挖掘的是什么意思? 个人的理解是从业务数据中挖掘出隐含的、未知的、对决策有潜在价值的关系、模式和趋势。也就是说我们从数据中挖掘到符合我们所需的目标。 数据挖掘的分解 目标定义-》数据采样-》数据整理-》模型评价-》模型发布。 所谓目标定义即定义我们到底需要做什么,目标的定义往往来源于需求,这里不去具体的阐述。 数据的整理分为很多步骤,对于已经采样的数据来说要进一步的进行审核和加工处理。数据预处理完成之后,在进行数据挖掘建模。最终对模型进行评价和发布。 属性规约 属性规约是通过属性合并来创建新属性维数,或者直接删除不相关的属性来减少属性的维数,从而提高数据挖掘的效率和降低计算成本。
数据挖掘——就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。 利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等, 它们分别从不同的角度对数据进行挖掘。 ①分类。 ④关联规则。关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。 在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据 意外规则的挖掘可以应用到各种异常信息的发现、分析、识别、评价和预警等方面。 ⑦Web页挖掘。
收集web日志的目的 Web日志挖掘是指采用数据挖掘技术,对站点用户访问Web服务器过程中产生的日志数据进行分析处理,从而发现Web用户的访问模式和兴趣爱好等,这些信息对站点建设潜在有用的可理解的未知信息和知识 随后网站经营人员就可以通过分析报表系统看到这些数据。 web日志挖掘过程 整体流程参考下图: ? 1、数据预处理阶段 根据挖掘的目的,对原始Web日志文件中的数据进行提取、分解、合并、最后转换为用户会话文件。 可用于系统性能分析、发现安全漏洞、为网站修改、市场决策提供支持。 (2)关联规则(association rules):关联规则是最基本的挖掘技术,同时也是WUM最常用的方法。 总结 web日志收集是每个互联网企业必须要处理的过程,当收集上来数据,并且通过适当的数据挖掘之后,会对整体网站的运营能力及网站的优化带来质的提升,真正的做到数据化分析和数据化运营。
●什么是数据挖掘? ●怎么培养数据分析的能力? ●如何成为一名数据科学家? 磨刀不误砍柴工。在学习数据挖掘之前应该明白几点: ●数据挖掘目前在中国的尚未流行开,犹如屠龙之技。 ●经典图书推荐:《概率论与数理统计》、《统计学》推荐David Freedman版、《业务建模与数据挖掘》、《数据挖掘导论》、《SAS编程与数据挖掘商业案例》、《Clementine数据挖掘方法及应用 (3).科学研究方向 ●需要深入学习数据挖掘的理论基础,包括关联规则挖掘 (Apriori和FPTree)、分类算法(C4.5、KNN、Logistic Regression、SVM等) 、聚类算法 ( 我不知道国内的数据挖掘学生是怎样学的,但是从网上的一些论坛看,很多都是纸上谈兵,这样很浪费时间,很没有效率。 ),他们的业务现在已经覆盖了绝大多数中国省级移动公司的分析挖掘项目,你上网搜索一下应该可以找到一些详细的资料吧。
数据挖掘又称数据库中的知识发现,是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程 利用数据挖掘进行数据分析常用的方法主要有分类 、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等, 它们分别从不同的角度对数据进行挖掘。 ④ 关联规则。关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。 在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据 意外规则的挖掘可以应用到各种异常信息的发现、分析、识别、评价和预警等方面。 ⑦ Web页挖掘。
将经过系统分析后抽象出来的概念模型转化为物理模型后,在visio或erwin等工具建立数据库实体以及各实体之间关系的过程。 但是,其他类型的数据挖掘模型,比如聚类和关联模型也有“预测”的特征。这是一个含义比较模糊的术语。 一个聚类模型被描述为“预测”一个个体属于哪个群体,一个关联模型可能被描述为基于已知基本属性“预测”一个或更多属性。 分类、回归、聚类和 关 联算法以及他们集成模型有什么共性呢?答案在于“评分”,这是预测模型应用到一个新样例的方式。 对于后者,传递出的任何新知识的价值和准确性的联系并不那么紧密;一些模型的预测能力可能有必要使我们相信发现的模式是真实的。
Python-数据挖掘-请求伪装 ? 一、超时设置 假设有个请求,要爬取1000个网站,如果其中有100个网站需要等待30s才能返回数据,如果要返回所有的数据,至少需要等待3000s。 (url, timeout=1) result = file.read() print(result) except Exception as error: print(error) 二、网络异常 ① URLError 异常和捕获 URLError 产生的原因主要有以下几种: 没有连接网络; 服务器连接失败; 找不到指定的服务器; 可以使用 try...except 语句捕获相应的异常。 ② HttpError 异常和捕获 每个服务器的 HTTP 响应都有一个数字响应码,这些响应码有些表示无法处理请求内容。如果无法处理,urlopen() 会抛出 HTTPError。
特异群组挖掘在证券金融、医疗保险、智能交通、社会网络和生命科学研究等领域具有重要应用价值。 图1 大数据集里的特异群组 大数据特异群组挖掘具有广泛应用背景,在证券交易、智能交通、社会保险、生物医疗、银行金融和网络社区等领域都有应用需求,对发挥大数据在诸多领域的应用价值具有重要意义。 5 、特异群组挖掘应用 行为数据反映了人类的各种行为方式,这些行为通常是个体对象主动的行为(如股票交易、看病就医、通勤出行、购物等),一般情况下,行为对象具有个体性。 在大规模的社会网络中挖掘小社区群体属于特异群组挖掘问题。 (6)论文抄袭检测 大多数论文都是不相同的,但是仍然存在一些抄袭的论文。 图7 在生物数据集上特异群组挖掘算法性能 此外,在公共安全方面发现突发群体事件,在社交网络大数据中发现影响安全、和谐网络环境的特异群体等都是大数据特异群组挖掘的应用需求。
01 — 关联规则挖掘背景和基本概念 如下所示的数据集,表中的每一行代表一次购买清单,注意我们只关心记录出现与否,不关心某条记录购买了几次,如购买十盒牛奶也只计一次。 ? 总结 支持度和自信度越高,说明规则越强,关联规则挖掘就是挖掘出满足一定强度的规则。 02 — 关联规则挖掘的之穷举算法 关联规则挖掘 给定一个交易数据集T,找出其中所有支持度 support >= min_support、自信度confidence >= min_confidence 对于普通的超市,其商品的项集数也在1万以上,用指数时间复杂度的算法不能在可接受的时间内解决问题。 怎样快速挖出满足条件的关联规则是关联挖掘的需要解决的主要问题。 03 — 关联规则挖掘优化算法之Apriori算法 关联规则挖掘分两步进行: 1)生成频繁项集 这一阶段找出所有满足最小支持度的项集,找出的这些项集称为频繁项集。
但是技术在结合行业之后就能够独当一面了,一方面有利于抓住用户痛点和刚性需求,另一方面能够累计行业经验,使用互联网思维跨界让你更容易取得成功。不要在学习技术时想要面面俱到,这样会失去你的核心竞争力。 (3).科学研究方向 ●需要深入学习数据挖掘的理论基础,包括关联规则挖掘 (Apriori和FPTree)、分类算法(C4.5、KNN、Logistic Regression、SVM等) 、聚类算法 ( 我不知道国内的数据挖掘学生是怎样学的,但是从网上的一些论坛看,很多都是纸上谈兵,这样很浪费时间,很没有效率。 ),他们的业务现在已经覆盖了绝大多数中国省级移动公司的分析挖掘项目,你上网搜索一下应该可以找到一些详细的资料吧。 这个时候,你可以看很多书,发现很多有趣的问题,比如在数据挖掘导论中提到的很多模型,在机器学习中并没有,而机器学习中各个模型并非独立的,都是相互联系而统一的。
腾讯云 LPWA物联网络是为传感终端提供用于通讯的基础网络。LPWA 物联网络支持 LoRaWAN/CLAA标准协议,按设备数量和租用时长计费,网络租用方式灵活;以低成本为您提供稳定的网络覆盖,节约建网成本,降低您的物联通讯费用,且无需关注网络运维。
扫码关注云+社区
领取腾讯云代金券