大家好前面已经介绍了选择查询、参数查询、交叉表查询,本节开始介绍操作查询部分内容。 操作查询用于多个记录执行批量操作,包括生成表查询、追加查询、更新查询和删除查询。 ? 生成表查询的意思可以从字面了解,通过该查询可以将查询的数据,创建成新的表。 二、示 例 演 示 下面通过示例来演示下生成表查询的步骤(和以前介绍的查询设计步骤相似。) 2、选择生成表查询 点击选项卡中查询类型的生成表,点击生成表,输入生成新表的表名称。(可以选择在当前数据库,或者另一数据库。) ? 之后可以点击运行来执行生成表,这里为了演示更多操作。 先点击保存该查询。 3、保存查询 在查询1处按鼠标右键,保存,将该生成表查询保存下来。(注意没有运行该查询,所以不会生成新的表格。),在导航窗格中查询类中可以看到带有感叹号的生成表查询的图标。 4、运行查询 步骤3中的查询可以点击运行,就可以生成新的图书数据表。 下面演示的是如果该查询没有打开,只在导航窗格中。
年Red Hat启动的项目,旨在能够让Linux用户更轻松地处理现代网络需求,尤其是无线网络,能自动发现网卡并配置ip地址。 类似在手机上同时开启wifi和蜂窝网络,自动探测可用网络并连接,无需手动切换。 192.168.1.99 hostnamectl 命令 描述:进行设置主机名称并且立即生效; #示例1 hostnamectl set-hostname XXXX ifconfig 命令 描述:主要用于查看网络状态以及查询 XX:XX:XX:XX:XX:XX 实际案例: #示例1..查看与修改网卡MAC macchanger -s eth0 #查看eth0的MAC地址 macchanger -r eth0 #随机生成并修改 DNS名称解析 (Ubuntu Service for DNS Name Resolution) 管理的服务是systemd-resolved.service, 其用于运行DNS查询和维护DNS缓存。
领8888元新春采购礼包,抢爆款2核2G云服务器95元/年起,个人开发者加享折上折
Linq查询权限模块动态生成 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 开发工具与关键技术 :MVC 作者:盘洪源 撰写时间:2019年7月27日星期六 项目的权限页面的里面的字段内容一般都是不是写死的,这个需要查询数据库表然后动态生成,还要进行一个数据的回填,所以这个页面的内容不要写死, 下面就是查询出模块和模块里面的操作的方法。 }).ToList(); return Json(list, JsonRequestBehavior.AllowGet); } 这个将模块和操作查询出来后就返回视图就
生成式对抗网络(generative adversarial network,GAN)是基于可微生成器网络的另一种生成式建模方法。生成式对抗网络基于博弈论场景,其中生成器网络必须与对手竞争。 生成网络直接产生样本 。其对手,判别器网络(dircriminator network)试图区分从训练数据抽取的样本和从生成器抽取的样本。 形式化表示生成对抗网络中学习的最简单方法是零和游戏,其中函数 确定判别器的受益。生成器接受 作为它自己的受益。 这不是明显的优点或缺点,并且只要向生成网络最后一层所有的值添加高斯噪声,就可以保证生成器网络向所有点分配非零概率。 以这种方式添加高斯噪声的生成网络从相同分布中采样,即,从使用生成器网络参数化条件高斯分布的均值所获得的分布采样。Dropout似乎在判别器中很重要,在计算生成网络的梯度时,单元应当被随机地丢弃。
外连接查询: 外连接分为左外连接、右外连接、和全外连接。左外连接是左边的表不加限制,里面的数据全部显示出来,而右边则是符合条件的才显示,不符合条件的不显示。 使用数据库管理工具自动生成sql查询语句: ? ? ? 复杂的sql查询语句或者某些不是很熟悉的语句可以使用自动生成,但是不能太过依赖。
06' , '03' , 34); insert into SC values('07' , '02' , 89); insert into SC values('07' , '03' , 98); 查询 where Teacher.Tname like '李%'; 查询学过「张三」老师授课的同学的信息 (进行多表的连接) select * from student join(select sc.sid ,最低分,平均分,及格率,中等率,优良率,优秀率 及格为>=60,中等为:70-80,优良为:80-90,优秀为:>=90 要求输出课程号和选修人数,查询结果按人数降序排列,若人数相同,按课程号升序排列 「张三」老师所授课程的学生中,成绩最高的学生信息及其成绩 (进行查询前先添加一条记录) insert into SC values('13' , '02' , 90); select student. 、课程编号、学生成绩 (通过group by来对重复记录(01 03,03 01)进行去重) select sc.sid,sc.cid,sc.score from sc join sc as r on
---- 新智元编译 来源:Science,DeepMind 编辑:闻菲、肖琴 【新智元导读】DeepMind今天在Science发表论文,提出生成查询网络(Generative Query Network 我们最新发表在Science的论文提出了生成查询网络(GQN):这个模型能从一个场景的少量2D照片中重新生成3D表示,并且能从新的摄像头视角将它渲染出来。 ? DeepMind的这套视觉系统,也即生成查询网络(GQN),使用从不同视角收集到的某个场景的图像,然后生成关于这个场景的抽象描述,通过一个无监督的表示学习过程,学习到了场景的本质。 Ali Eslami解读 在这篇发表于《科学》(Science)的最新论文中,我们提出生成查询网络(Generative Query Network,GQN)。 表示网络将agent的观察结果作为输入,并生成一个描述基础场景的表示(向量)。然后,生成网络从先前未观察到的角度来预测(“想象”)场景。 ? Agent从不同视角观察训练场景 ?
首先回顾一下《实战生成对抗网络[1]:简介》这篇文章的内容,GAN由生成器和判别器组成。简单起见,我们选择简单的二层神经网络来实现生成器和判别器。 生成器 实现生成器并不难,我们采取的全连接网络拓扑结构为:100 → 128 → 784,最后的输出为784是因为MNIST数据集就是由28 x 28像素的灰度图像组成。 小结 一个简单的GAN网络就这么几行代码就能搞定,看样子生成一副画也没有什么难的。 先不要这么乐观,其实,GAN网络中的坑还是不少,比如在迭代过程中,就出现过如下提示: Iter: 9000 D loss: nan G_loss: nan 从代码中我们可以看出,GAN网络依然采用的梯度下降法来迭代求解参数 本文完整的代码请参考: https://github.com/mogoweb/aiexamples 参考 首幅人工智能画作拍卖43.2万美元 远超预估价 实战生成对抗网络[1]:简介
从名称也不难看出,在GAN中包括了两个部分,分别为”生成”和“对抗”,整两个部分也分别对应了两个网络,即生成网络(Generator) 和判别网络(Discriminator) ,为描述简单,以图像生成为例 : image.png 在GAN框架的训练过程中,希望生成网络 生成的图片尽量真实,能够欺骗过判别网络 ;而希望判别网络 能够把 生成的图片从真实图片中区分开。 最终,GAN希望能够使得训练好的生成网络 生成的图片能够以假乱真,即对于判别网络 来说,无法判断 生成的网络是不是真实的。 综上,训练好的生成网络 便可以用于生成“以假乱真”的图片。 GAN的框架结构 GAN的框架是由生成网络 和判别网络 这两种网络结构组成,通过两种网络的“对抗”过程完成两个网络的训练,GAN框架由下图所示: 由生成网络 生成一张“Fake image” 总结 生成对抗网络GAN中通过生成网络 和判别网络 之间的“生成”和“对抗”过程,通过多次的迭代,最终达到平衡,使得训练出来的生成网络 能够生成“以假乱真”的数据,判别网络 不能将其从真实数据中区分开
生成式对抗网络 GAN 是 2014 年由 Goodfellow 提出的一种新颖的生成式模型,随后得到了快速发展。 Goodfellow 本人提出的是无条件的 GAN;之后出现了能生成不同类别图像的有条件的 GAN;基于卷积神经网络的 DCGAN;可以加入潜在因素,生成不同风格的 InfoGan;彻底解决 GAN 训练不稳定问题的 资源 | 谷歌开源TFGAN:轻量级生成对抗网络工具库 为使开发者更轻松地使用 GAN 进行实验,谷歌最近开源了 TFGAN,一个实现轻松训练和评估 GAN 的轻量级库。
GAN主要用途: 生成以假乱真的图片 生成视频、模型 5.1.2 什么GAN 5.1.2.1 定义 生成对抗网络(Generative Adversarial Network,简称GAN),主要结构包括一个生成器 表示生成器生成的分布映射 过程分析: 1、定义GAN结构生成数据 (a)(a)状态处于最初始的状态,生成器生成的分布和真实分布区别较大,并且判别器判别出样本的概率不稳定 2、在真实数据上训练 n epochs :固定判别器D的条件下得到生成器G,能够最小化真实样本与生成样本的差异。 最终可以这样: 5.1.2.4 G、D结构 G、D结构是两个网络,特点是能够反向传播可导计算要介绍G、D结构,需要区分不同版本的GAN。 2014年最开始的模型: G、D都是multilayer perceptron(MLP) 缺点:实践证明训练难度大,效果不行 2015:使用卷积神经网络+GAN(DCGAN(Deep Convolutional
GAN属于生成模型,使用生成数据分布PGP_{G}去无限逼近数据的真实分布PdataP_{data}。衡量两个数据分布的差异有多种度量,例如KL散度等,但是前提是得知道PGP_{G}。 例如: 输入唐诗三百首,输出机器写的唐诗 输入一堆动漫人物的照片,输出机器生成的动漫人物照片 该问题的核心是原数据有其分布PdataP_{data},机器想要学习新的分布PGP_{G}去无限逼近PdataP 结构 GAN由generator和discriminator两部分组成: z -> G -> x' -> D -> 01 x -> generator:输入随机的zz,输出生成的 整体来看,generator和discriminator构成了一个网络结构,通过设置loss,保持某一个generator和discriminator参数不变,通过梯度下降更新另外一个的参数即可。 通常,GG是神经网络。
这是通过GAN迭代训练30W次,耗时3小时生成的手写字图片效果,大部分的还是能看出来是数字的。 实现原理 简单说下原理,对抗生成网络需要训练两个任务,一个叫生成器,一个叫判别器,如字面意思,一个负责生成图片,一个负责判别图片,生成器不断生成新的图片,然后判别器去判断哪儿哪儿不行,生成器再不断去改进 数据集 self.mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 定义占位符,真实图片和生成的图片 real_logits, labels=tf.ones_like(real_logits)) * ( 1 - Config.smooth)) # 识别生成的图片
在 DeepMind 最新发表在顶级期刊 Science 的论文《Neural scene representation and rendering》中,计算机通过「生成查询网络 GQN」也拥有了这种空间推理能力 在这项发表在 Science 的研究中,DeepMind 引入了生成查询网络(Generative Query Network/GQN)的框架,其中机器通过到处走动并仅在由它们自己获取的数据中训练来感知周围环境 GQN 模型由两部分构成:一个表征网络以及一个生成网络。表征网络将智能体的观察作为输入,并生成一个描述潜在场景的表征(向量)。然后生成网络从之前未观察过的视角来预测(想象)该场景。 ? 在训练过程中,生成器学习环境中的典型目标、特征、关系和规律。这组共享的「概念」使表征网络能够以高度压缩、抽象的方式来描述场景,让生成网络在必要时填写细节。 为此,我们引进了生成查询网络(Generative Query Network /GQN),机器在这个框架中将学习如何仅使用自己的传感器表征场景。
1、简介:Oracle层次化查询是Oracle特有的功能实现,主要用于返回一个数据集,这个数据集存在树的关系(数据集中存在一个Pid记录着当前数据集某一条记录的Id)。 2、层次化查询主要包含两个子句,一个start with另一个是connect by。 代码解析: (1)、start with PID is NULL 指定层次化查询的根节点, ? 红框内的两个节点为根节点,并开始遍历其余的节点。 5、Oracle 还为层次化查询提供了一些伪列( Pseudo Column )。 (3)、CONNECT_BY_ROOT 查询操作符可以加在 connect by 之后的某个字段之前,表示获得这一行的根节点的该字段的值。
用一个形象的例子解释就是:GAN就好比是一个大的网络,在这个网络中有两个小的网络,一个是生成网络,可以当做是制作假钞的人, 而另一个是鉴别网络,也就是鉴别假钞的人。 对于生成网络的目标就是去欺骗鉴别器,而鉴别器是为了不被生成器所欺骗。模型经过交替的优化训练,都能得到提升,理论证明,最后生成模型最好的效果是能够让鉴别器真假难分,也就是真假概率五五开。 上图是生成对抗网络的结构示意图,鉴别器接受真实样本和生成器生成的虚假样本,然后判断出真假结果。生成器接受噪声,生成出虚假样本。 而且在神经网络中的实践中,它也不存在。不过这方法在ML中太常见了,因此就忽略了。最优判别器在极小极大博弈中,首先固定生成器G,最大化价值函数,从而得出最优判别起D。 总结GAN结合了生成模型和鉴别模型,消除了生成模型的损失函数难以定义的问题基于概率分布来计算,不受生成维度的限制可以用来进行半监督学习
在手写sql的年代,如果想从sqlserver数据库随机取几条数据,可以利用order by NewId()轻松实现,要实现多表查询也可以用select * from A,B Where A.ID=B.ID 关键点: 1.随机排序问题:可以用 Select(d=> new {NewId=new Guid()}).OrderBy(d=>d.NewId)达到order by NewId()的效果 2.多表查询 from a in TableA from b in TableB where a.ID == b.ID 另外利用linq to xml还可以轻易将查询出来的结果保存成xml(这一点比传统xml 的方法确实要新颖很多) 详细代码可参考我在一个项目中的示例(功能为随机取机10条产品视频的记录,并生成xml供播放器调用) using (DBDataContext db = new DBDataContext } ).OrderBy(p => p.NewId).Take(10); //利用linq to xml生成
,那么被还原的数据就有可能兼具两个输入数据的特点融合,就好像孩子兼具爸爸与妈妈的特征那样,这点特性在人脸生成上大有用场。 这次我们使用CelebA数据集来训练VAE网络,该数据集包含了将近200000张人脸图像,这次我们使用的网络结构与上一节相差不大,只是在细节上要做一些改变。 上面是原图,下面是网络重构后输出的图片。 我们接下来看看如何用编解码器生成新人脸: n_to_show = 30 ''' 随机采样一点作为关键向量,因为解码器已经知道如何将位于单位正太分布区间内的一点转换为人脸, 因此我们随机在区间内获取一点后 上面的人脸图片在我们的图片库中不存在,是网络动态生成的结果。这些人脸实际上与图片库中的不同人脸又有相似之处,他们的生成实际上是网络将图片库中人脸的不同特征进行组合的结果。
为了让在实验中所开发的生成器网络与判别器网络双方渐渐成长茁壮,设计成最初仅能生成低解析度的马赛克图像,随着训练进行,渐渐生成高解析度的图像。 生成对抗网络(Generative Adversarial Networks,GAN) 近年来,人工智能的飞速发展,离不开深度神经网络,深度学习的核心思想就是不断的增加层级、增加模型的深度,在图像分类、 但是生成对抗网络(GAN)的出现,让事情发生了变化。GAN采用半监督学习的方式,自动从源数据中学习。 在后续的文章中,我将从一个最简单的生成手写数字开始,探索GAN的应用,预期将包含如下内容: 采用DCGAN(深度卷积生成对抗网络)优化手写数字的生成 使用SSGAN(半监督学习生成对抗网络)实现图像生产生成 利用CGAN(条件生成对抗网络)生成时尚衣柜 利用CycleGAN(循环一致生成网络)实现图像风格的转换 从文本构建逼真的图像 我的数学能力有限,因此主要以代码实例为主,不会过多深入理论,敬请关注。
私有网络(VPC)是基于腾讯云构建的专属网络空间,为您的资源提供网络服务,不同私有网络间完全逻辑隔离。作为隔离网络空间,您可以通过软件定义网络的方式管理您的私有网络 ,实现 IP 地址、子网、路由表等功能的配置管理……
扫码关注腾讯云开发者
领取腾讯云代金券