首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类

p=8640 介绍 在本文中,我们将看到如何开发具有多个输出的文本分类模型。我们将开发一个文本分类模型,该模型可分析文本注释并预测与该注释关联的多个标签。多标签分类问题实际上是多个输出模型的子集。...输出: 您可以看到,“有毒”评论的出现频率最高,其次分别是 “侮辱”。 创建多标签文本分类模型 创建多标签分类模型的方法有两种:使用单个密集输出层和多个密集输出层。...具有单输出层的多标签文本分类模型 在本节中,我们将创建具有单个输出层的多标签文本分类模型。  在下一步中,我们将创建输入和输出集。输入是来自该comment_text列的注释。 ...具有多个输出层的多标签文本分类模型 在本节中,我们将创建一个多标签文本分类模型,其中每个输出标签将具有一个 输出密集层。...结论 多标签文本分类是最常见的文本分类问题之一。在本文中,我们研究了两种用于多标签文本分类的深度学习方法。在第一种方法中,我们使用具有多个神经元的单个密集输出层,其中每个神经元代表一个标签。

3.5K11
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于Keras的多标签图像分类

    multi-class 和 multi-label的区别 multi-class是相对于binary二分类来说的,意思是需要分类的东西不止有两个类别,可能是3个类别取一个(如iris分类),或者是10个类别取一个...其实关于多标签学习的研究,已经有很多成果了。 主要解法是 * 不扩展基础分类器的本来算法,只通过转换原始问题来解决多标签问题。如BR, LP等。 * 扩展基础分类器的本来算法来适配多标签问题。...多标签分类项目结构 整个多标签分类的项目结构如下所示: ├── classify.py ├── dataset │ ├── black_jeans [344 entries │ ├── blue_dress...--labelbin : 保存的多标签二进制对象路径 --plot : 保存绘制的训练准确率和损失图 然后,设置一些重要的参数,包括训练的总次数 EPOCHS 、初始学习率 INIT_LR、批大小 BS...,原因主要是多标签分类的目标是将每个输出的标签作为一个独立的伯努利分布,并且希望单独惩罚每一个输出节点。

    1.8K30

    【ACL 2022】用于多标签文本分类的对比学习增强最近邻机制

    摘要 多标签文本分类(MLTC)是自然语言处理中的一项基本且具有挑战性的任务。以往的研究主要集中在学习文本表示和建模标签相关性上。然而,在预测特定文本的标签时,通常忽略了现有的类似实例中的丰富知识。...此外,作者设计了一个多标签对比学习目标,使模型学习到kNN的分类过程,并提高了在推理过程中检索到的相邻实例的质量。...2.3 多标签对比学习 在MLTC中,模型通常是通过二元交叉熵(BCE)损失的监督学习训练,而不知道kNN检索过程。因此,检索到的相邻实例可能没有与测试实例相似的标签,并且对预测几乎没有什么帮助。...为了填补这一空白,作者提出用多标签对比学习目标来训练模型。 现有的监督对比学习方法试图缩小来自同一类的实例之间的距离,并将来自不同类的实例推开。...因此,为了建模多标签实例之间的复杂相关性,作者设计了一个基于标签相似度的动态系数。

    1.4K30

    6. 逻辑回归

    本文为 scikit-learn机器学习(第2版)学习笔记 逻辑回归常用于分类任务 1....2.5 ROC、AUC 好的分类器AUC面积越接近1越好,随机分类器AUC面积为0.5 from sklearn.metrics import roc_curve from sklearn.metrics...多标签分类 一个实例可以被贴上多个 labels 问题转换: 实例的标签(假设为L1,L2),转换成(L1 and L2),以此类推,缺点,产生很多种类的标签,且模型只能训练数据中包含的类,很多可能无法覆盖到...对每个标签,训练一个二分类器(这个实例是L1吗,是L2吗?)...,缺点,忽略了标签之间的关系 5.1 多标签分类性能指标 汉明损失:不正确标签的平均比例,0最好 杰卡德相似系数:预测与真实标签的交集数量 / 并集数量,1最好 from sklearn.metrics

    76220

    TensorFlow 2.0中的多标签图像分类

    如果收集标记的数据,则可以通过监督学习来解决所有这些二元问题。 ? 还可以设计更复杂的监督学习系统来解决非二进制分类任务: 多类分类:有两个以上的类,每个观测值都属于一个并且只有一个类。...应用示例是医学诊断,其中需要根据患者的体征和症状开出一种或多种治疗方法。通过类推,可以设计用于汽车诊断的多标签分类器。...这些迭代器对于图像目录包含每个类的一个子目录的多类分类非常方便。但是,在多标签分类的情况下,不可能拥有符合该结构的图像目录,因为一个观察可以同时属于多个类别。...需要做的就是获取一个预先训练的模型,然后在其之上简单地添加一个新的分类器。新分类头将从头开始进行培训,以便将物镜重新用于多标签分类任务。...这是用于构成模型的TF.Hub模块。 总结 多标签分类:当一个观察的可能标签数目大于一个时,应该依靠多重逻辑回归来解决许多独立的二元分类问题。使用神经网络的优势在于,可以在同一模型中同时解决许多问题。

    6.8K71

    基于sklearn的LogisticRegression鸢尾花多类分类实践

    模型选择 本人相关文章: 逻辑斯谛回归模型( Logistic Regression,LR) 基于sklearn的LogisticRegression二分类实践 sklearn多类和多标签算法: Multiclass...classification 多类分类 意味着一个分类任务需要对多于两个类的数据进行分类。...比如,对一系列的橘子,苹果或者梨的图片进行分类。多类分类假设每一个样本有且仅有一个标签:一个水果可以被归类为苹果,也可以是梨,但不能同时被归类为两类。...固有的多类分类器: sklearn.linear_model.LogisticRegression (setting multi_class=”multinomial”) 1对多的多类分类器:...当存在结时(两个类具有同样的票数的时候), 1对1分类器会选择总分类置信度最高的类,其中总分类置信度是由下层的二元分类器 计算出的成对置信等级累加而成。

    1.6K30

    基于sklearn的LogisticRegression二分类实践

    本文使用sklearn的逻辑斯谛回归模型,进行二分类预测,并通过调整各种参数,对预测结果进行对比。 1....sklearn中的LogisticRegression模型一文对模型的参数进行了说明 sklearn 中文文档 https://sklearn.apachecn.org/docs/0.21.3/ 2....实践代码 生成以y=-x^2+1.5为分类线的数据集 为增加模型学习难度,将随机抽取的10%的数据强行赋值为正类 尝试通过特征的多项式升维、归一化,然后交给LR模型,训练一个分类曲线。...对比可以发现: 对比 1,2 列,数据越密集的区域,越容易学到准确的分类边界,且容易克服噪声的影响; 随机种子seed不一样,产生的样本集合不同,在假设的分类模型比较接近真实分类界线(y=-x^2+1.5...),随着数据增加,学习到的模型越靠谱;在假设的分类模型比真实分类界限复杂时,在数据密集区域,随着数据增多,配合上正则化,依然可以学习到更准确的模型。

    1.8K20

    python简单代码_gdal python

    继续修复bug:GBDT和LR模型需要分开用不同的数据训练,当数据量多的时候,就能体现出差别,分开训练时防止过拟合,能提升模型的泛化性能。...---- 测试数据:iris 数据采用sklearn里面自带的iris花分类数据。...为了模拟CTR的二分类效果,做了一下特殊处理: 1、 iris花是个3分类的数据,因此把分类为2的数据,统一归为0,这样就模拟了0/1的二分类 2、分类数据比0/1=2:1 提醒:貌似GBDT模型不能太深...= train_test_split(iris,test_size=0.8,random_state=203) print(iris_train.head(5)) #拆分特征和标签为测试集和训练集 Y_train...is ',roc_auc_score(Y_test,GBDT.predict_proba(X_test)[:,1])) # 测试GBDT预测值和真值的差距 print('roc_auc_score of

    80420

    长尾分布的多标签文本分类平衡方法

    ,即一个样本只对应一个标签,但实际上多标签在实际应用中也非常常见,例如个人爱好的集合一共有6个元素:运动、旅游、读书、工作、睡觉、美食,一般情况下,一个人的爱好有这其中的一个或多个,这就是典型的多标签分类任务...源码在Roche/BalancedLossNLP Loss Functions 在NLP领域,二值化交叉熵损失(Binary Cross Entropy Loss)常被用来处理多标签文本分类问题,给定一个含有...\sigma(z_i^k),对于多标签分类问题来说我们需要将模型的输出值压缩到[0,1]之间,所以需要用到sigmoid函数 原本单标签问题,真实值y^k相当于一个onehot向量,而对于多标签来说,真实值...下面,我们介绍三种替代方法解决多标签文本分类中长尾数据的类别不均衡问题。...(这在多标签分类的情况下是很关键的),然后对"容易分类的"样本(头部样本)分配较低的权重 首先,为了重新平衡权重,在单标签的情况下,一个样本可以通过采样概率P_i^C = \frac{1}{C}\frac

    3.5K20

    机器学习中分类任务的常用评估指标和python代码实现

    混淆矩阵 混淆矩阵定义为(类x类)大小的矩阵,因此对于二进制分类,它是2x2,对于3类问题,它是3x3,依此类推。为简单起见,让我们考虑二元分类并了解矩阵的组成部分。 ?...calculate_precision(y, y_pred) r = calculate_recall(y, y_pred) return 2*p*r / (p+r) AUC-ROC AUC-ROC是用于二分类问题的非常常见的评估指标之一...您可以如下所示进行计算- from sklearn.metrics import roc_auc_score def roc_auc(y, y_pred): return roc_auc_score...Precision @ k Precision @ k是用于多标签分类设置的流行指标之一。在此之下,我们计算给定示例的前k个预测,然后计算出这k个预测中有多少个实际上是真实标签。...same as TP/(TP+FP)) log损失 当您遇到二分类问题时,log损失是相当不错的。

    1.7K10

    机器学习分类问题:9个常用的评估指标总结

    你好,我是zhenguo 对机器学习的评估度量是机器学习核心部分,本文总结分类问题常用的metrics 分类问题评估指标 在这里,将讨论可用于评估分类问题预测的各种性能指标 1 Confusion Matrix...1,预测的数据点类别为0 我们可以使用sklearn的混淆矩阵函数confusion_matrix,用于计算分类模型混淆矩阵的度量。...我们可以使用sklearn的classification_report功能,用于获取分类模型的分类报告的度量。...正如我们所知,准确度是我们模型中预测的计数(预测值=实际值),而对数损失是我们预测的不确定性量,基于它与实际标签的差异。借助对数损失值,我们可以更准确地了解模型的性能。...我们可以使用sklearn的log_loss函数。 10 例子 下面是Python中的一个简单方法,它将让我们了解如何在二进制分类模型上使用上述性能指标。

    1.4K10

    【图像分类】基于Pascal VOC2012增强数据的多标签图像分类实战

    近期在复现论文过程中发现,使用增强数据集进行多标签分类时,某些图片缺少对应的标记,需要对照原始Pascal VOC2012数据集的标注方法,重新获取各类物体的标注信息,并完成多标签分类任务以及相应的指标评价...现将相关细节和部分代码进行解读,以帮助大家理解多标签分类的流程和相关注意事项。...txt文件 本次实战是关于图片多标签分类任务的介绍,因此主要关注的为Annotation文件夹和ImageSets下的Main文件夹。...在多标签分类任务中,我们可以构建一个1x20的矩阵作为图片的标签,其中对应的类别若存在,则置1,反之则置0。...总结 以上就是整个多标签图像分类实战的过程,由于时间限制,本次实战并没有进行详细的调参工作,因此准确率还有一定的提升空间。

    3.9K20

    【图像分类】基于Pascal VOC2012增强数据的多标签图像分类实战

    接着上一次的多标签分类综述,本文主要以Pascal VOC2012增强数据集进行多标签图像分类训练,详细介绍增强数据集制作、训练以及指标计算过程,并通过代码进行详细阐述,希望能为大家提供一定的帮助!...作者&编辑 | 郭冰洋 上一期多标签图像分类文章,也是本文的基础,点击可以阅读:【技术综述】多标签图像分类综述 1 简介 基于image-level的弱监督图像语义分割大多数以传统分类网络作为基础,从分类网络中提取物体的位置信息...近期在复现论文过程中发现,使用增强数据集进行多标签分类时,某些图片缺少对应的标记,需要对照原始Pascal VOC2012数据集的标注方法,重新获取各类物体的标注信息,并完成多标签分类任务以及相应的指标评价...现将相关细节和部分代码进行解读,以帮助大家理解多标签分类的流程和相关注意事项。...在多标签分类任务中,我们可以构建一个1x20的矩阵作为图片的标签,其中对应的类别若存在,则置1,反之则置0。

    1.9K20

    分类评估方法-召回率、ROC与混淆矩阵

    在二分类问题中,我们把样例的真实类别与分类模型预测的预测类别,进行排列组合,正例是类别1,反例是类别0,得到如下4种情形: 真正例(True Positive,TP) 假反例(False Negative...当 FPR = TPR 时,也就是对角线(下图虚线),表示无论真实类别是0还是1的样本,分类模型预测预测为1的概率是想等的。...可以使用sklearn库中roc_auc_score()函数来计算ROC下面积,即AUC。 注意正例1反例0,传参记得处理数据。...from sklearn.metrics import roc_auc_score print(roc_auc_score(y_test, y_pred)) 混淆矩阵 ---- 将上述二分类中的混淆矩阵应用到多分类任务中...,即将正例反例两类扩展到类1类2···类n中,反映预测标签与真实标签的情况,计算各类预测结果中的百分比情况,使用颜色作为区分,颜色越深对于百分比越大,表示属于该类的概率越大。

    1.7K30

    深度学习实战-MNIST数据集的二分类

    MNIST数据集:二分类问题 MNIST数据集是一组由美国高中生和人口调查局员工手写的70,000个数字的图片,每张图片上面有代表的数字标记。...这个数据集被广泛使用,被称之为机器学习领域的“Hello World”,主要是被用于分类问题。...本文是对MNIST数据集执行一个二分类的建模 关键词:随机梯度下降、二元分类、混淆矩阵、召回率、精度、性能评估 导入数据 在这里是将一份存放在本地的mat文件的数据导进来: In [1]: import...最后预测出准确率,输出正确的比例 In [16]: # K折交叉验证 from sklearn.model_selection import StratifiedKFold # 用于生成分类器的副本 from...完美的分类器ROC_AUC等于1;纯随机分类器的ROC_AUC等于0.5 In [45]: from sklearn.metrics import roc_auc_score roc_auc_score

    82530

    AI-逻辑回归模型

    由于算法的简单和高效,在实际中应用非常广泛☺️ 广告点击率,预测用户是否会点击某个广告,是典型的二分类问题。逻辑回归可以根据用户的特征(如年龄、性别、浏览历史等)来预测点击概率。...信用卡账单是否会违约,金融机构利用逻辑回归模型来评估信用卡用户是否存在违约风险,这通常涉及对用户的信用历史、交易行为等进行分析。 逻辑回归是一种用于分类问题的统计模型,特别是适合于处理二分类问题。...这个损失函数的目的是使得模型输出的概率尽可能接近真实标签。当模型预测的概率与真实标签一致时,损失函数的值会很小;反之,如果预测的概率与真实标签相差较大,则损失函数的值会比较大。...ROC曲线,全称为接收者操作特征曲线(Receiver Operating Characteristic Curve),是一种用于评估二分类模型性能的图形化工具。...as metrics metrics.accuracy_score(y_train,y_pred_train) from sklearn.metrics import roc_auc_score roc_auc_score

    321148

    『深度概念』理解多标签图像分类任务的MAP评价方法

    1.概念介绍 多标签图像分类(Multi-label Image Classification)任务中图片的标签不止一个,因此评价不能用普通单标签图像分类的标准,即mean accuracy,该任务采用的是和信息检索中类似的方法...上图比较直观,圆圈内(true positives + false positives)是我们选出的元素,它对应于分类任务中我们取出的结果,比如对测试样本在训练好的car模型上分类,我们想得到top...实际多类别分类任务中,我们通常不满足只通过top-5来衡量一个模型的好坏,而是需要知道从top-1到top-N(N是所有测试样本个数,本文中为20)对应的precision和recall。...显然随着我们选定的样本越来也多,recall一定会越来越高,而precision整体上会呈下降趋势。...-1.参考内容 1.http://blog.sina.com.cn/s/blog_9db078090102whzw.html#commentComment

    2.3K20
    领券