首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

交通标识分类-TensorFlow实现

整理翻译自:https://github.com/waleedka/traffic-signs-tensorflow交通标识分类-tensorflow实现 测试平台为win10系统,python3运行环境...占位符是TensorFlow从主程序中接收输入的方式。...如果需要,我们可以很容易的使用 softmax 函数或者其他的函数转换成概率(这里不需要)。 在这个项目中,只需要知道最大值所对应的索引就行了,因为这个索引代表着图片的分类标签。...因此,我们需要将标签和神经网络的输出转换成概率向量。TensorFlow中有一个 sparse_softmax_cross_entropy_with_logits 函数可以实现这个操作。...上图truth后的数字为真实的标签,Prediction后的数字为预测的标签。现在的分类测试还是训练集中的图片,所以还不知道模型在未知数据集上面的效果如何。接下来在测试集上面进行评测。

62410

基于Tensorflow实现声音分类

实现声音分类 本章我们来介绍如何使用Tensorflow训练一个区分不同音频的分类模型,例如你有这样一个需求,需要根据不同的鸟叫声识别是什么种类的鸟,这时你就可以使用这个方法来实现你的需求了。...关于梅尔频谱具体信息读者可以自行了解,跟梅尔频谱同样很重要的梅尔倒谱(MFCCs)更多用于语音识别中,对应的API为librosa.feature.mfcc()。...训练数据,因为分类音频数据小而多,最好的方法就是把这些音频文件生成TFRecord,加快训练速度。...') create_data_tfrecord('dataset/test_list.txt', 'dataset/test.tfrecord') Urbansound8K 是目前应用较为广泛的用于自动城市环境声分类研究的公共数据集...要注意class_dim参数的值,这个是类别的数量,要根据你数据集中的分类数量来修改。

3.9K54
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    建立智能的解决方案:将TensorFlow用于声音分类

    有许多用于语音识别和音乐分类的数据集,但对于随机的声音分类来说并不是很多。经过一些研究,我们发现了Urbansound数据集。...2.提取的音频特征存储为TensorFlow记录文件。 这些特征与YouTube-8M模型兼容。这个解决方案还提供了TensorFlow VGGish模型作为特征提取器。...https://research.google.com/audioset/download.html 改良版的YouTube-8M被用于训练和评估。...转换过程的简短说明:https://medium.com/iotforall/sound-classification-with-tensorflow-8209bdb03dfb 分类 最后,我们需要一个接口来将数据输入到神经网络并得到结果...3.Web界面 python daemon.py实现了一个简单的web界面,默认情况下,它可以在http://127.0.0.1:8000中使用。我们使用与前一个示例相同的代码。

    2K71

    Tensorflow实现朴素贝叶斯分类器

    朴素贝叶斯分类器是基于贝叶斯定理以及一些有关特征独立性的强(朴素)假设的简单概率分类器,也称“独立特征模型”。...本文demo使用TF的实现朴素贝叶斯分类器,用TensorFlow_probability概率库实现参数可训练的高斯分布变种。 [iris.png] 1....从每个样品中测量出四个特征:萼片和花瓣的长度和宽度。本文目标是构建一个朴素的贝叶斯分类器模型,根据萼片长度和萼片宽度特征(因此,只有4个特征中的2个)预测正确的类别。...贝叶斯分类器的基本方程式是贝叶斯定律: [w5jlw90ei5.png] d是特征维数,k是类的数目,P(Y)是类别的先验分布,P(X | Y)是输入的类条件分布 朴素贝叶斯分类器假设数据特征...在这种情况下,类条件分布分解为 [e3p71gjk6k.png] 有了类的先验分布和类条件分布,朴素贝叶斯分类器模型简化为 [s8ry259ozw.png] 3.TensorFlow math api

    1.5K32

    译:Tensorflow实现的CNN文本分类

    / github:https://github.com/dennybritz/cnn-text-classification-tf 在这篇文章中,我们将实现一个类似于Kim Yoon的卷积神经网络语句分类的模型...本文提出的模型在一系列文本分类任务(如情感分析)中实现了良好的分类性能,并已成为新的文本分类架构的标准基准。 本文假设你已经熟悉了应用于NLP的卷积神经网络的基础知识。...默认情况下,TensorFlow将尝试将操作放在GPU上(如果有的话)可用,但是嵌入式实现当前没有GPU支持,并且如果放置在GPU上会引发错误。...这里,W是我们的滤波器矩阵,h是将非线性应用于卷积输出的结果。 每个过滤器在整个嵌入中滑动,但是它涵盖的字数有所不同。...Checkpoints 可用于在以后的时间继续训练,或使用 early stopping选择最佳参数设置。 使用Saver对象创建 Checkpoints。 ?

    1.3K50

    利用TensorFlow实现多元线性回归分类器

    从今天的推文开始,我打算把经典的机器学习算法,都用tf实现一遍。这样一来可以熟悉一下机器学习算法,二来可以对tf有比较好的掌握,如果你是新手,那就跟着我的节奏,一起学习吧。讲的不好,大神轻拍~。...Github 地址: https://github.com/Alvin2580du/machine_learning_with_tensorflow.git # 导入需要的模块 # - * - coding...: utf-8 - * - import tensorflow as tf import numpy as np import pandas as pd from sklearn import datasets...所以这里In_size就是训练数据的维度,也就是变量的个数。而out_size是输出的维度,就是因变量的维度,所以是3....),模型最后输出是softmax多分类函数,所以最后每个样本都会有一个属于不同类别的概率值。

    1.2K80

    教程 | 用TensorFlow Estimator实现文本分类

    本文探讨了如何使用自定义的 TensorFlow Estimator、嵌入技术及 tf.layers 模块来处理文本分类任务,使用的数据集为 IMDB 评论数据集。...由于这个模型并不关心句子中单词的顺序,所以我们通常把它称为词袋方法(BOW)。让我们看看如何通过评估器(Estimator)实现这个模型。 我们从定义用做我们分类器输入的特征列开始。...这种方法也被用于预制评估器中,并为我们提供一个能够在所有模型上使用的统一的评估函数。...,并且将结果传给「params」对象,再将这个对象不作任何修改直接用于我们的「cnn_model_fn」。...,检查点本身并不足以作出预测,为了将存储的权重映射到相应的张量(tensor)上,用于构建评估器的实际代码也是必需的。

    98630

    TensorFlow实现简单神经网络分类问题

    利用TensorFlow来训练所有的神经网络的训练过程可以分为如下3个步骤: ①定义神经网络的结构和前向传播的输出结果。 ②定义损失函数以及选择反向传播优化算法。...下面给出一个简单的二分类问题的神经网络算法(完整的流程) 神经网络具体结构如下图: ? 训练流程图: ? 几个解释: ①Numpy 是一个科学计算的工具箱的,这里通过Numpy生成模拟数据集。...②batch是每一次的训练数据的大小。...代码: Python import tensorflow as tf import matplotlib.pyplot as plt from numpy.random import RandomState...Y = [[int(x1 + x2 < 1)] for (x1, x2) in X] # 创建一个会话来运行tensorflow程序 with tf.Session() as sess:

    1.1K20

    教程 | 用TensorFlow Estimator实现文本分类

    本文探讨了如何使用自定义的 TensorFlow Estimator、嵌入技术及 tf.layers 模块来处理文本分类任务,使用的数据集为 IMDB 评论数据集。...由于这个模型并不关心句子中单词的顺序,所以我们通常把它称为词袋方法(BOW)。让我们看看如何通过评估器(Estimator)实现这个模型。 我们从定义用做我们分类器输入的特征列开始。...这种方法也被用于预制评估器中,并为我们提供一个能够在所有模型上使用的统一的评估函数。...,并且将结果传给「params」对象,再将这个对象不作任何修改直接用于我们的「cnn_model_fn」。...,检查点本身并不足以作出预测,为了将存储的权重映射到相应的张量(tensor)上,用于构建评估器的实际代码也是必需的。

    1.3K30

    用 TensorFlow 实现物体检测的像素级分类

    最近,TensorFlow 的「物体检测 API」有了一个新功能,它能根据目标对象的像素位置来确定该对象的像素。换句话来说,TensorFlow 的物体检测从原来的图像级别成功上升到了像素级别。...使用 TensorFlow 的「物体检测 API」图片中的物体进行识别,最后的结果是图片中一个个将不同物体框起来的方框。...最近,这个「物体检测 API」有了一个新功能,它能根据目标对象的像素位置确定该对象的像素,实现物体的像素分类。 ?...Faster-RCNN 是一个用于物体检测的算法,它被分为两个阶段:第一阶段被称为「候选区域生成网络」(RPN),即生成候选物体的边框;第二阶段本质上是 Fast R-CNN 算法,即利用 RolPool...从每个候选边框获取对象特征,并执行分类和边框回归。

    86220

    用 TensorFlow 实现物体检测的像素级分类

    最近,TensorFlow 的「物体检测 API」有了一个新功能,它能根据目标对象的像素位置来确定该对象的像素。换句话来说,TensorFlow 的物体检测从原来的图像级别成功上升到了像素级别。...使用 TensorFlow 的「物体检测 API」图片中的物体进行识别,最后的结果是图片中一个个将不同物体框起来的方框。...最近,这个「物体检测 API」有了一个新功能,它能根据目标对象的像素位置确定该对象的像素,实现物体的像素分类。 ?...Faster-RCNN 是一个用于物体检测的算法,它被分为两个阶段:第一阶段被称为「候选区域生成网络」(RPN),即生成候选物体的边框;第二阶段本质上是 Fast R-CNN 算法,即利用 RolPool...从每个候选边框获取对象特征,并执行分类和边框回归。

    1.2K60

    教程 | 用TensorFlow Estimator实现文本分类

    由于这个模型并不关心句子中单词的顺序,所以我们通常把它称为词袋方法(BOW)。让我们看看如何通过评估器(Estimator)实现这个模型。 我们从定义用做我们分类器输入的特征列开始。...下图展示了一个 d×m 维的过滤器矩阵F在每个 3-gram 单词窗口的滑动,去构建一个新的特征映射。此后,池化层通常被用于组合相邻的结果。 ?...这种方法也被用于预制评估器中,并为我们提供一个能够在所有模型上使用的统一的评估函数。...,并且将结果传给「params」对象,再将这个对象不作任何修改直接用于我们的「cnn_model_fn」。...,检查点本身并不足以作出预测,为了将存储的权重映射到相应的张量(tensor)上,用于构建评估器的实际代码也是必需的。

    1.9K40

    简单的TensorFlow分类教程

    本篇文章有2个topic,简单的分类器和TensorFlow。首先,我们会编写函数生成三种类别的模拟数据。第一组数据是线性可分的,第二种是数据是月牙形数据咬合在一起,第三种是土星环形数据。...每组数据有两个类型,我们将分别建立模型,对每组数据分类。 本文的所有代码在ML-tutorial....例如,generate_Saturn_data()方法,首先使用np.linspace()方法产生角度变化,然后确定圆心,之后生成两个范围的半径,分别用于生成内核数据和外部的环形数据,形状就像土星和他的卫星带...gen_data()方法负责把上面生成的模拟数据组装成训练数据集和测试数据集,每个样本的标注采用了TensorFlow支持的One-Hot编码格式。...moon 类圆模型 第三组数据是环形数据,为了得到一个类圆的分类边界,我们需要增加神经网络的隐藏层数量,一个有四个隐藏层的神经网络分类器。

    52830

    如何构建用于垃圾分类的图像分类器

    尝试原型化图像分类器来分类垃圾和可回收物 - 这个分类器可以在光学分拣系统中应用。...构建图像分类器 训练一个卷积神经网络,用fastai库(建在PyTorch上)将图像分类为纸板,玻璃,金属,纸张,塑料或垃圾。使用了由Gary Thung和Mindy Yang手动收集的图像数据集。...最终在测试数据上获得了92.1%的准确度,这非常棒 - TrashNet数据集的原始创建者在70-30测试训练拆分中使用支持向量机实现了63%的测试精度(训练了神经网络以及27%的测试精度)。...5.后续步骤 如果有更多的时间,会回去减少玻璃的分类错误。还会从数据集中删除过度曝光的照片,因为这些图像只是坏数据。...https://github.com/collindching/Waste-Sorter 关于图书 《深度学习之TensorFlow:入门、原理与进阶实战》和《Python带我起飞——入门、进阶、商业实战

    3.3K31

    CNN中文文本分类-基于TensorFlow实现

    在网上也有了一些开源的实现,例如比较著名的dennybritz大牛的博客Implementing a CNN for Text Classification in TensorFlow基于早期TensorFlow...的一个实现版本。...如今,TensorFlow大版本已经升级到了1.3,对很多的网络层实现了更高层次的封装和实现,甚至还整合了如Keras这样优秀的一些高层次框架,使得其易用性大大提升。...相比早起的底层代码,如今的实现更加简洁和优雅。 本章的目的是基于TensorFlow的API来重新实现一个在中文文本上的分类器。如果你觉得对你有些许帮助或者疑惑,欢迎star和交流。...其中,copy_data.sh用于从每个分类拷贝6500个文件,cnews_group.py用于将多个文件整合到一个文件中。

    1.1K21

    TiDB 在北京银行交易场景中的应用实践

    TiDB 在金融交易场景中的应用实践 网联支付清算平台 & 银联无卡快捷支付系统 在构建数据库之后,我们来看看 TiDB 在北京银行交易场景中的应用时间。...[up-71d30c3b59db54233dad1f0fc5237cf9eaf.JPEG] 根据当时中国人民银行“断直连”的要求,所有银行的三方支付交易都要进行集中的汇总。...IT 团队进行多次线上的运维操作,包括版本升级、打补丁等,很好地利用了 TiDB 分布式数据库的多副本特性实现“运维零中断”的操作。...于是,我们将刚才提到的两台 TiDB 其中的一台专门用于处理这些实时联机交易,另一台 TiDB 专门进行批处理。 另外一点,网贷平台在处理完自己的会计分录之后,由传统的核心总账系统进行核算与账务处理。...我们需要更智慧、更优雅地去解决可能带来的服务中断的情况。银行对业务连续性保障要求非常高,我们现在可以充分利用分布式数据库的架构优势,真正实现零停机的集群动态节点调整。

    1K31

    Implementing a CNN for Text Classification in TensorFlow(用tensorflow实现CNN文本分类) 阅读笔记

    进行卷积;第三层用max-pool把第二层多个filter的结果转换成一个长的特征向量并加入dropout正规化;第四层用softmax进行分类。...实现 TextCNN类,参数如下: sequence_length:句子长度,把每个句子统一填充到59个单词 num_classes:输出的类型个数,这里是积极和消极两类...嵌入层) tf.device("/cpu:0")使用cpu进行操作,因为tensorflow当gpu可用时默认使用gpu,但是embedding不支持gpu实现,所以使用CPU操作 tf.name_scope...用于设备的log,方便debugging FLAGS是程序的命令行输入 CNN初始化和最小化loss 按照TextCNN的参数进行初始化 tensorflow提供了几种自带的优化器...,我们使用Adam优化器求loss的最小值 train_op就是训练步骤,每次更新我们的参数,global_step用于记录训练的次数,在tensorflow中自增 summaries汇总

    72630
    领券