什么是用户画像 用户画像:通过各个维度对用户或者产品特征属性的刻画,并对这些特征分析统计挖掘潜在价值信息。完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。 用户画像使用标签来量化用户特征属性,达到描述用户的目的。用户画像是对现实世界中的用户进行建模。用户画像是描述用户的数据, 是符合特定业务需求的对用户的形式化描述。 用户画像,即用户信息标签化。 用户画像的本质 专业术语:人物角色 企业使用术语:用户画像 技术原理:数据清理、分析、统计、打标签、用户信息标签化 为什么使用用户画像 在互联网进入大数据时代后,给企业及消费者行为带来一系列改变,其中最大的变化 ) 移动电信集中监管系统画像 移动电信集中监管系统画像是对用户的通信数据等各种指标进行画像分析 供销存画像 传感器数据分析画像 用户画像实现 建日全量表 CREATE TABLE dw.userprofile_tag_userid 用户画像标签存储 MySQL 存储画像标签相关的元数据 Hive存储标签相关数据的计算结果 数据库建表 创建用户标签表 CREATE TABLE dw.profile_tag_userid ( tagid
金融企业是最早开始用户画像的行业,由于拥有丰富的数据,金融企业在进行用户画像时,对众多纬度的数据无从下手,总是认为用户画像数据纬度越多越好,画像数据越丰富越好,某些输入的数据还设定了权重甚至建立了模型, 这些数据都分布在不同的信息系统,金融企业都上线了数据仓库(DW),所有画像相关的强相关信息都可以从数据仓库里面整理和集中,并且依据画像商业需求,利用跑批作业,加工数据,生成用户画像的原始数据。 数据仓库成为用户画像数据的主要处理工具,依据业务场景和画像需求将原始数据进行分类、筛选、归纳、加工等,生成用户画像需要的原始数据。 这部分工作建议在数据仓库进行,不建议在大数据管理平台(DMP)里进行加工。 定性信息进行定量分类是用户画像的一个重要工作环节,具有较高的业务场景要求,考验用户画像商业需求的转化。 保险公司内部的交易系统不多,交易方式不是很复杂,数据主要集中在产品系统和交易系统之中,客户关系管理系统中也包含丰富了信息,但是数据集中在很多保险公司还没有完成,数据仓库建设可能需要在用户画像建设前完成。
腾讯云精选爆款云原生数据库TDSQL-C首年19.9元,云数据库MYSQL首年89元,还有更多热门云数据库满足您的上云需求
金融企业是最早开始用户画像的行业,由于拥有丰富的数据,金融企业在进行用户画像时,对众多纬度的数据无从下手,总是认为用户画像数据纬度越多越好,画像数据越丰富越好,某些输入的数据还设定了权重甚至建立了模型, 这些数据都分布在不同的信息系统,金融企业都上线了数据仓库(DW) 所有画像相关的强相关信息都可以从数据仓库里面整理和集中,并且依据画像商业需求,利用跑批作业,加工数据,生成用户画像的原始数据。 数据仓库成为用户画像数据的主要处理工具,依据业务场景和画像需求将原始数据进行分类、筛选、归纳、加工等,生成用户画像需要的原始数据。 这部分工作建议在数据仓库进行,不建议在大数据管理平台(DMP)里进行加工。 定性信息进行定量分类是用户画像的一个重要工作环节,具有较高的业务场景要求,考验用户画像商业需求的转化。 保险公司内部的交易系统不多,交易方式不是很复杂,数据主要集中在产品系统和交易系统之中,客户关系管理系统中也包含丰富了信息,但是数据集中在很多保险公司还没有完成,数据仓库建设可能需要在用户画像建设前完成。
伴随着对人的了解逐步深入,用户画像的概念悄然而生。 用户画像 用户画像,能够完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。 什么是用户画像? 为什么需要用户画像 用户画像的核心工作是为用户打标签,打标答的重要目的之一是为了让人能够理解并且方便计算机处理,如可以做分类统计:喜欢红酒的用户有多少?喜欢红酒的人群中,男、女比例是多少? 所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。 数据源分析 构建用户画像的数据来源于所有用户相关的数据。 目标分析 用户画像的目标是通过分析用户行为,最终为每个用户打上标签,以及该标签的权重。 用户画像的数据模型可以概括为这样一个公式:用户标识+时间+行为类型+接触点(网址+内容),某个用户在某个时间、某个地点做了什么事情,就会被打上一个既定的标签。
伴随着对人的了解逐步深入,一个概念悄然而生:用户画像(UserProfile),完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。 一、什么是用户画像? 二、为什么需要用户画像 用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜欢红酒的人群中,男、女比例是多少? 所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。 3.1 数据源分析 构建用户画像是为了还原用户信息,因此数据来源于:所有用户相关的数据。 如何对用户行为数据构建数据模型,分析出用户标签,将是本文着重介绍的内容。 3.2 目标分析 用户画像的目标是通过分析用户行为,最终为每个用户打上标签,以及该标签的权重。 如,购买权重计为5,浏览计为1 红酒 1 // 浏览红酒 红酒 5 // 购买红酒 综合上述分析,用户画像的数据模型,可以概括为下面的公式:用户标识 + 时间 + 行为类型 + 接触点(网址+内容),某用户因为在什么时间
▌假设问题 Stack Overflow(后面简称SO)想要针对自己的用户推送一篇广告,假设针对所有用户推送,那SO的用户画像到底是什么样子的? 问题解析 作为一名数据分析师,我可以从数据集中得到接受调查人群的用户大致画像,当然这只是整体状况(后续进阶还可以对SO用户聚类,分别推送不同的广告),然后从用户画像的角度配合策划部门拿出广告方案。 OK,18年的数据偏多,正好,这样的数据时效性还是不错的,那我接着往下探究,看看我们数据呈现了一个怎样的画像。 一维数据画像 ? 学习方式:细看学习方式发现,大部分OF用户还是使用最权威的官方手册,当然在OF上提问或者学习的比重也不轻; 二维数据画像 既然说到到了工作,那对接触编程语言的人来说,目前什么样的语言最流行,大家最看好什么样的语言 数据库使用 数据库的使用与否多还是看公司使用什么样的数据库,所以这里大家的意愿也可能多体现了公司的方向或者想去的公司的方向; 相比较而言,SQL语言中PostgreSQL是增幅比较快的,MySQL和SQL
首先看一下大数据与应用画像的关系,现在大数据是炙手可热,相信大家对大数据的四个V都非常了解,大数据应该说是 信息技术的自然延伸,意味着无所不在的数据。 ? 第二个是用户画像它是一种模型,是通过分析挖掘用户尽可能多的数据信息得到的,它是从数据中来,但对数据做过了抽象,比数据要高,后面所有用户画像的内容都是基于这个展开的。 数据管理层对这些数据进行清洗、拉通、整合以及分析建模,构建用户画像。 数据接口层和应用层基于用户画像,提供各种分析、服务类以及营销类的应用,服务于金融、制造、航空等各个行业的用户。 ? 这是我们为某知名制造企业客户做的一个大数据项目,目标就是拉通和建立消费者统一的用户数据平台,建立消费者用户画像,并基于用户画像实现精准营销。 ;同时收集用户的服务满意度数据,补充和完善用户画像信息。
关于用户画像的概念,数据相关从业人员应该都知道。用户画像的应用场景很广泛,比如精细化运营、数据分析与挖掘、精准营销、搜索和广告的个性化定向推送等。 用户画像的分析核心一个是对用户建模打标签,关于这,之前在内部交流群分享了一份个人学习的资料,大家都觉得真香,今天把全部内容共享出来供大家自行下载阅读。 主要目录: 1、用户画像应用场景 2、产品层面的宏观分析维度 3、用户画像标签类型 4、用户画像项目开发流程 5、数据仓库介绍 6、用户画像数据质量管理 7、常见需要开发的用户画像相关模型 8、用户行为标签表实际开发案例
开发画像后的标签数据,如果只是“躺在”数据仓库中,并不能发挥更大的业务价值。只有将画像数据产品化后才能更便于业务方使用。 本文主要介绍用户画像产品化后主要可能涵盖到的功能模块,以及这些功能模块的应用场景。 01 即时查询 即时查询功能主要面向数据分析师。 将用户画像相关的标签表、用户特征库相关的表开放出来供数据分析师查询。 Hive存储的相关标签表,包括userid和cookieid两个维度。 图13 对比分析两个人群特征 本文介绍了用户画像产品化主要涵盖的功能模块以及这些模块的应用场景。用户画像产品化是把数据应用到业务服务中的一个重要出口,业务人员熟知业务,但对数据不了解。 关于作者 赵宏田,资深大数据技术专家,在大数据、数据分析和数据化运营领域有多年的实践经验,擅长Hadoop、Spark等大数据技术,以及业务数据分析、数据仓库开发、爬虫、用户画像系统搭建等。
摘要: 用户画像(User Profile),作为大数据的根基,它完美地抽象出一个用户的信息全貌,为进一步精准、快速地分析用户行为习惯、消费习惯等重要信息,提供了足够的数据基础,奠定了大数据时代的基石。 微博大数据经过近两年不断地调整、磨合、优化,针对社交媒体特性,研发构建了一整套完整的用户画像体系。 同时,大数据的用户画像体系已应用于微博众多的业务场景中,并随着微博业务的发展不断完善升级,将“大数据”概念落地落实。 为了方便与大家交流探讨,大数据用户团队特别整理了用户画像系列文章,主要从微博的角度出发,重点介绍社交媒体平台中用户的特性,微博业务发展中用户的建模刚需,以及不同纬度建模过程中遇到的问题和解决方案。 相对于用户能力标签,用户兴趣标签涉及到的上层业务更加广泛,依赖的数据也更加复杂多变,在下一篇用户画像系列文章中,我们将会详细介绍用户兴趣标签的挖掘流程。
/startup.sh 此时当我们在数据库中插入一条数据的时候 insert into user_info (account,password,sex,age,phone,status,wechat_account INSERT","id":15,"tablename":"user_info","account":"abcd","age":24,"email":"981456@qq.com","status":0} 创建用户画像 ()); reduce.addSink(new MemberAnalySink()); env.execute("portrait member"); } } 用户画像行为特征 这里我们会分析用户的几个行为,并进行画像 浏览商品行为:频道id、商品id、商品类别id、浏览时间、停留时间、用户id、终端类别(1、PC端,2、微信小程序,3、app)、deviceId。 创建用户画像商品类别偏好标签 创建一个商品类型标签实体类 @Data public class ProductTypeLabel { private Long userid; private
“赢在用户”这本书将其翻译为“人物角色”,在腾讯我们习惯了使用“用户画像”这个术语。表达的意思一样,是真实用户的虚拟代表,是在深刻理解真实数据的基础上得出的一个的虚拟用户。 然而,即使要创建定量用户画像,前期充分的定性调研也非常重要,在对聚类分析结果的解读或参数的调整中,对用户的充分理解可以帮助我们创建出有意义的用户画像。 用户画像的创建可分为以下几个步骤: ? 通过前面阶段的数据收集,我们收集到了大量数据,如何在数据分析的过程中让多人参与,同时又不会遗漏掉数据呢,亲和图此时就非常合适,该方法的优势在于让大量定性信息的分析过程可视化,便于大家协同工作和统一认识, 我们需要做的事情主要是: (1)结合真实的数据,选择典型特征加入到用户画像中 (2)加入描述性的元素和场景描述,让用户画像更加丰满和真实 (3)将用户画像框架中的范围和抽象的描述具体化,比如,将员工数 ,企业B中有B1、B2和B3三个个人用户,可能A2和B2很相似,这时我们可以对这些个人用户画像进行再整理,根据企业用户画像的优先级,来定义所有个人用户画像的优先级。
企业画像是腾讯云推出的面向智慧城市、金融监管、企业情报、企业评估等场景的企业大数据综合服务平台。通过构建亿级企业知识图谱,深度挖掘企业、高管、法定代表人、产品、产业链间的复杂网络关系,提供城市、区域宏观经济分析、招商引资推荐服务,引导地方产业发展……
扫码关注云+社区
领取腾讯云代金券