考虑series和dataframe兼具numpy数组和字典的特性,那么就不难理解二者的以下属性: ndim/shape/dtypes/size/T,分别表示了数据的维数、形状、数据类型和元素个数以及转置结果...与此同时,series因为只有一列,所以数据类型自然也就只有一种,pandas为了兼容二者,series的数据类型属性既可以用dtype也可以用dtypes获取;而dataframe则只能用dtypes...为了沿袭字典中的访问习惯,还可以用keys()访问标签信息,在series返回index标签,在dataframe中则返回columns列名;可以用items()访问键值对,但一般用处不大。...ix,可混合使用标签和数字索引,但往往容易混乱,所以现已弃用 05 数据处理 ?...inner、left、right和outer4种连接方式,但只能实现SQL中的等值连接 join,语法和功能与merge一致,不同的是merge既可以用pandas接口调用,也可以用dataframe对象接口调用
两个DataFrame相加,如果DataFrame的形状和对应的索引都一样,直接将对应位置(按行索引和列索引确定位置)的数据相加,得到一个新的DataFrame。 2....两个DataFrame相加,如果DataFrame的形状和索引不完全一样,只会将两个DataFrame中行索引和列索引对应的数据相加,生成一个形状能兼容两个DataFrame的新DataFrame,在没有运算结果的位置填充空值...使用fill_value参数填充数据后再进行运算,如果两个DataFrame中的数据都是填充值,则此位置的结果为空值,运算原理如下图。 ? 五、两个Series算术运算 1....两个Series相加,如果形状和索引不完全一样,只会将行索引对应的数据相加,生成一个形状能兼容两个Series的新Series,在没有运算结果的位置填充空值(NaN)。 ?...与DataFrame不同的是,使用fill_value参数先填充数据再进行运算时,结果中不会有空值。因为Series是一维数据,对Series填充时,不存在两个Series都是填充值的行索引。
如果调用combine_first()方法的df1中数据非空,则结果保留df1中的数据,如果df1中的数据为空值且传入combine_first()方法的df2中数据非空,则结果取df2中的数据,如果df1...和df2中的数据都为空值,则结果保留df1中的空值(空值有三种: np.nan、None 和 pd.NaT)。...即使两个DataFrame的形状不相同也不受影响,联合时主要是根据索引来定位数据的位置。 二combine()实现合并 ---- ?...fill_value: 先用fill_value填充DataFrame中的空值,再按传入的函数进行合并操作。 fill_value会填充DataFrame中所有列的空值,而且是在合并之前先填充。...例如其中一个DataFrame中的数据比另一个DataFrame中的数据多,但第一个DataFrame中的部分数据质量(准确性、缺失值数量等)不如第二个DataFrame中的高,就可以使用combine
cat file.csv col1|col2|col3 1|2|A 3|4|B 3、数据帧 pd.DataFrame 用来创建 Pandas 的 DataFrame: data = [[1, 2, "...out put ########## col1 col2 col3 col1 col2 col3 0 1 3 A 1 2 4 B 4、 获取数据帧的形状...df.shape df.shape 属性可以获取 DataFrame 的形状,也就是几行几列这样的数据: print(df) print("Shape:", df.shape) ####### out...,如下图: 20、数据帧过滤-按索引选择 df.iloc 以 19 里面的数据帧为例,使用 df.iloc 可以用索引: df.iloc[0] ######## out put ##########...与上面讨论的交叉表类似,Pandas 中的数据透视表提供了一种交叉制表数据的方法。 假如 DataFrame 如下: df = ...
Pandas 包含一些有用的调整,但是:对于一元操作,如取负和三角函数,这些ufunc将保留输出中的索引和列标签,对于二元操作,如加法和乘法,将对象传递给ufunc时,Pandas 将自动对齐索引。...这意味着,保留数据的上下文并组合来自不同来源的数据 - 这两个在原始的 NumPy 数组中可能容易出错的任务 - 对于 Pandas 来说基本上是万无一失的。...通用函数:索引保留 因为 Pandas 为兼容 NumPy 而设计,所以任何 NumPy ufunc都可以用于 Pandas Series和DataFrame对象。...通用函数:索引对齐 对于两个Series或DataFrame对象的二元操作,Pandas 将在执行操作的过程中对齐索引。这在处理不完整数据时非常方便,我们将在后面的一些示例中看到。...2 9.0 3 5.0 dtype: float64 ''' 数据帧中的索引对齐 在DataFrames上执行操作时,列和索引都会发生类似的对齐: A = pd.DataFrame(rng.randint
删除缺失值:删除缺失值是最简单的处理方式,这种方式通过直接删除包含缺失值的行或列来达到目的,适用于删除缺失值后产生较小偏差的样本数据,但并不是十分有效。...删除缺失值的前后对比: 2.1.3 填充缺失值 pandas中提供了填充缺失值的方法fillna(),fillna()方法既可以使用指定的数据填充,也可以使用缺失值前面或后面的数据填充。...线性插补: 2.1.5 缺失值处理案例 创建包含空缺值的DataFrame: import pandas as pd import numpy as np na_df = pd.DataFrame...2.2.3 重复值处理案例 创建DataFrame对象: # 创建DataFrame对象 import pandas as pd import numpy as np df = pd.DataFrame...: # 删除重复值|指定 # 删除全部的重复值,但保留最后一次出现的值 df.drop_duplicates(keep = 'last') 输出为: 2.3 异常值处理 2.3.1 异常值的检测
Pandas是Python的数据分析利器,DataFrame是Pandas进行数据分析的基本结构,可以把DataFrame视为一个二维数据表,每一行都表示一个数据记录。...创建Pandas数据帧的六种方法如下: 创建空DataFrame 手工创建DataFrame 使用List创建DataFrame 使用Dict创建DataFrme 使用Excel文件创建DataFrame...2、手工创建Pandas DataFrame 接下来让我们看看如何使用pd.DataFrame手工创建一个Pandas数据帧: df = pd.DataFrame(data=['Apple','Banana...由于我们没有定义数据帧的列名,因此Pandas默认使用序号作为列名。...容易注意到,字段的键对应成为DataFrame的列,而所有的值对应数据。 记住这个对应关系。 现在假设我们要创建一个如下形状的DataFrame: ?
数据结构 Pandas的核心数据结构有两类: Series:一维标签数组,类似于NumPy的一维数组,但支持通过索引标签的方式获取数据,并具有自动索引功能。...],'Age': [30, 25, 40]} df = pd.DataFrame(data) 从现有文件读取数据: df = pd.read _csv('data.csv ') 数据查看与清洗...使用fillna()函数用指定值填充缺失值。 使用interpolate()函数通过插值法填补缺失值。 删除空格: 使用str.strip ()方法去除字符串两端的空格。...缺失值处理(Missing Value Handling) : 处理缺失值是时间序列数据分析的重要步骤之一。Pandas提供了多种方法来检测和填补缺失值,如线性插值、前向填充和后向填充等。...这些数据结构可以用来处理不同类型和形式的数据,并且可以进行索引和切片操作,方便数据的处理和操作。 强大的数据处理能力:Pandas能够对不同类型、大小和形状的数据进行灵活的处理。
Pandas中使用read_json()函数读取JSON文件的数据,并将数据转换成一个DataFrame类对象。...2.1.3填充缺失值 pandas中提供了填充缺失值的方法fillna(),fillna()方法既可以使用指定的数据填充,也可以使用缺失值前面或后面的数据填充。...,仅保留最后一次出现的数据项;'False’表示所有相同的数据都被标记为重复项。...但有时我们只需要根据某列查找重复值 df[df.duplicated(['gender'])] # 删除全部的重复值 df.drop_duplicates() # 删除重复值|指定 # 删除全部的重复值,但保留最后一次出现的值...若设为True,则会在清除结果对象的现有索引后生成一组新的索引。
今天要和大家继续讲解机器学习中一个看似枯燥但至关重要的环节——数据预处理。前面已经讲解过数据清洗和数据评质量评估(点击跳转),如果你已看过,那你已经打下了坚实的基础!...常出现在用户年龄缺失、商品价格为空、传感器数据断档。常见的处理方法包括:均值填充:适用于数值型数据,但对离群值敏感。中位数填充:适合存在离群值的数据。众数填充:适用于类别型数据。...特征选择与工程特征工程通过组合、转换现有特征,甚至创造新特征,让数据更贴合模型需求。递归特征消除(RFE):逐步剔除不重要的特征。...主成分分析(PCA):通过线性变换将数据从高维空间映射到低维空间,使得新特征(主成分)尽可能保留数据的方差,特别适用于特征数量过多的情况,可以有效降低计算复杂度。...Pandas:数据分析利器Pandas是专为结构化数据设计的库,核心是DataFrame(二维表格)和Series(一维序列),让数据清洗和分析变得像Excel一样简单Series:一维带标签数组,支持自动对齐
具体来说,我们将检查: 对序列或数据帧创建和使用索引 用索引选择值的方法 在索引之间移动数据 重新索引 Pandas 对象 对序列或数据帧创建和使用索引 索引可以显式创建,也可以让 Pandas 隐式创建...重新索引 Pandas 对象 可以使用.reindex()方法重新索引DataFrame。 重新索引使DataFrame符合新索引,将旧索引中的数据与新索引对齐,并在对齐失败的地方填充NaN。...此后对DataFrame所做的更改将不会保留,至少要等到该对象再次分配给数据存储对象后才能保留。...数据的形状已更改,现在有其他行或列,在重塑时无法确定 可能还有更多原因,但是总的来说,这些情况的确会发生,作为 Pandas 用户,您将需要解决这些情况才能进行有效的数据分析 让我们开始研究如何通过创建具有一些缺失数据点的数据帧来处理缺失数据...请注意,删除重复项时会保留索引。 重复记录可能具有不同的索引标签(在计算重复项时不考虑标签)。 因此,保留的行会影响结果DataFrame对象中的标签集。 默认操作是保留重复项的第一行。
3.complex type 如果只是在Spark数据帧中使用简单的数据类型,一切都工作得很好,甚至如果激活了Arrow,一切都会非常快,但如何涉及复杂的数据类型,如MAP,ARRAY和STRUCT。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...Pandas DataFrame的转换 类似地,定义了与上面相同的函数,但针对的是Pandas数据帧。...但首先,使用 complex_dtypes_to_json 来获取转换后的 Spark 数据帧 df_json 和转换后的列 ct_cols。...作为输入列,传递了来自 complex_dtypes_to_json 函数的输出 ct_cols,并且由于没有更改 UDF 中数据帧的形状,因此将其用于输出 cols_out。
02 Pandas核心应用场景 按照使用逻辑,盘点Pandas的主要可以做的事情: 能将Python, Numpy的数据结构灵活地转换为Pandas的DataFrame结构(玩转Pandas,让数据处理更...easy系列1; 玩转Pandas,让数据处理更easy系列2) DataFrame可以方便地实现增加和删除行、列 ( 玩转Pandas,让数据处理更easy系列2) 智能地带标签的切片,好玩的索引提取大数据集的子集...强大而灵活的分组功能,在数据集上实现分-应用-合的操作,达到整合和改变数据形状的目的。 时间序列的处理功能,生成 data range,移动的时间窗,时间移动和lagging等。...用指定值填充NaN值, DataFrame.fillna(value=None, method=None, axis=None, inplace...默认axis=0,即沿着行方面连接,如果axis设置为1,会沿列方向扩展,行数为两者间行数的较大者,较小的用NaN填充。 ? concatenate还可以创建带层级的索引,关于这部分暂不展开介绍。
准备 数据准备主要在第 10 章“整理数据”中进行介绍,但这也是贯穿本章大部分内容的常见主题。 探索 探索跨越这本书的第 3 章“用序列表示单变量数据”,直到第 15 章“历史股价分析”。...重新索引实现了以下几项功能: 重新排序现有数据来匹配一组标签 在没有标签数据的地方插入NaN标记 可以使用某种逻辑填充标签的缺失数据(默认为添加NaN值) 重新索引可以很简单,只需为Series的.index...在下一章中,您将学习如何使用DataFrame以统一的表格结构表示多个Series数据。 四、用数据帧表示表格和多元数据 Pandas DataFrame对象将Series对象的功能扩展为二维。...替换列的内容 通过使用[]运算符将新的Series分配给现有列,可以替换DataFrame的内容。 以下演示了用rounded_price中的Price列替换Price列。...结果数据帧将由两个列的并集组成,缺少的列数据填充有NaN。 以下内容通过使用与df1相同的索引创建第三个数据帧,但只有一个列的名称不在df1中来说明这一点。
Excel可视化步骤 上文我们使用了pandas可视化,其就是matplotlib库的封装,其优点就是简单粗暴,但相应的确定也是很多的。...Excel可视化的基本步骤如下: 导出数据 前文我们说到了《数据分析三板斧》,我们除了可视化不用pandas做外,其余还是需要我们用pandas做的。...那我们现在的疑惑就是:pandas处理并分析完成好的数据如何供我们Excel使用了?答案就是:导出数据。 单个的DataFrame(或者Series)数据,我们通过to_excel来进行导出。...用下面的代码完成。...加logo和背景填充 插入一个矩形形状,填充红色,就有logo了;背景我们填充颜色,其RGB为(205,221,230)。 坐标轴设置 首先,X轴需要有线条,选择X轴,线条换为实线,换成黑色即可。
示例 重建索引与其他对象对齐 填充时重新加注 重建索引时的填充限制 重命名 重新索引会更改DataFrame的行标签和列标签。重新索引意味着符合数据以匹配特定轴上的一组给定的标签。...可以通过索引来实现多个操作: 重新排序现有数据以匹配一组新的标签 在没有标签数据的标签位置插入缺失值(NA)标记 示例 import pandas as pd import numpy as np N...1.543179 -0.590498 0.569140 5 -0.887682 -0.390340 0.793262 6 0.200928 0.536087 -0.884333 注意 : 在这里,df1数据帧...import pandas as pd import numpy as np df1 = pd.DataFrame(np.random.randn(6,3),columns=['col1','col2...限制指定连续匹配的最大计数 import pandas as pd import numpy as np df1 = pd.DataFrame(np.random.randn(6,3),columns
python工具库之一是 Pandas。...随着这么多年来的社区高速发展和海量的开源贡献者,使得 pandas 几乎可以胜任任何数据处理工作。...图片 2.写入数据处理完数据后,我们可能会把处理后的DataFrame保存下来,最常用的文件写入函数如下:to_csv: 写入 CSV 文件。 注意:它不保留某些数据类型(例如日期)。...注意它有很重要的参数how(如何确定观察是否被丢弃)和 thred(int类型,保留缺失值的数量)。fillna: 用指定的方法填充缺失值,例如向前填充 ( ffill)。...concat:沿行或列拼接DataFrame对象。当我们有多个相同形状/存储相同信息的 DataFrame 对象时,它很有用。
Pandas 是一个用于数据操作和分析的开源 Python 库。它提供了高性能、易于使用的数据结构和数据分析工具。...Pandas 的核心数据结构是 Series 和 DataFrame,分别用于处理一维和二维数据。...pandas as pd 主要数据结构 「Series」: 一维数组,类似于 Python 列表或 Numpy 数组,但具有标签(索引)。..., 'City': ['木星', '海王星'] } new_df = pd.DataFrame(new_data) # 追加新数据到现有 DataFrame updated_df = pd.concat...# 字典数据 df = pandas.DataFrame(字典数据, index=[0]) # 加超链接 df.
一句代码前后要加() 列名要带引号 形状不能用数字 用加号连接的代码不缩进 示例数据 还是使用的seaborn模块里面的iris数据: import pandas as pd iris = pd.read_csv...2.属性设置 属性包括: 属性 参数 颜色 color 大小 size 形状 shape 透明度 alpha 填充颜色 fill 2.1 统一设置 统一设置需要设为有意义的值。...,写fill = 'none' # 实心形状,用color设置颜色 (ggplot(data=iris) + geom_point(aes(x='sepal_length', y='petal_length...import pandas as pd df = pd.DataFrame({'gene':['gene1','gene2','gene3'], 'sample1...构建一个数据框: import pandas as pd import numpy as np # 固定随机种子,保证结果可复现 np.random.seed(42) df = pd.DataFrame
数据处理过程中,经常会遇到数据有缺失值的情况,本文介绍如何用Pandas处理数据中的缺失值。 一、什么是缺失值 对数据而言,缺失值分为两种,一种是Pandas中的空值,另一种是自定义的缺失值。 1....Pandas中的空值有三个:np.nan (Not a Number) 、 None 和 pd.NaT(时间格式的空值,注意大小写不能错),这三个值可以用Pandas中的函数isnull(),notnull...返回结果是一个与原数据形状相同的Series或DataFrame。...limit: 表示填充执行的次数。如果是按行填充,则填充一行表示执行一次,按列同理。 在缺失值填充时,填充值是自定义的,对于数值型数据,最常用的两种填充值是用该列的均值和众数。...DataFrame的众数也是一个DataFrame数据,众数可能有多个(极限情况下,当数据中没有重复值时,众数就是原DataFrame本身),所以用mode()函数求众数时取第一行用于填充就行了。
领取专属 10元无门槛券
手把手带您无忧上云