首页
学习
活动
专区
圈层
工具
发布

图解pandas的窗口函数rolling

公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~图解pandas的窗口函数rolling在我们处理数据,尤其是和时间相关的数据中,经常会听到移动窗口、滑动窗口或者移动平均、窗口大小等相关的概念...截取窗的各种函数。字符串类型,默认为None。on:可选参数;对于dataframe而言,指定要计算滚动窗口的列,值可以是dataframe中的列名。...:图片图片在这里需要注意的是:pandas或者numpy中的np.nan空值与其他数值相乘或者相加都是nan:图片参数min_periods如何理解参数min_periods?...3:除了第一个和最后一个元素不同;其他相同因为存在min_periods=2,所以它们能够计算出结果,而不是NaN图片参数closed取值可以为right、left、both和neither官网的详细解释...:right:窗口中的第一个数据点从计算中删除(excluded)left:窗口中的最后一个数据点从计算中删除both:不删除或者排除任何数据点neither:第一个和最后一个数据点从计算中删除图片取值

3.6K42
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas 2.2 中文官方教程和指南(二十一·一)

    一些窗口操作还支持构造函数中的method='table'选项,该选项可以在整个DataFrame上执行窗口操作,而不是一次处理单个列或行。...由于这些计算是滚动统计的一个特例,因此在 pandas 中实现了以下两种调用是等效的: In [74]: df = pd.DataFrame(range(5)) In [75]: df.rolling...从多个 DataFrame 列中组装日期时间 你也可以传递一个整数或字符串列的 DataFrame 来组装成 Timestamps 的 Series。...这将包括在包含日期上匹配的时间: 警告 使用单个字符串对DataFrame行进行索引(例如frame[dtstring])已从 pandas 1.2.0 开始弃用(由于不确定是索引行还是选择列而引起的歧义...在这种情况下,origin将被设置为时间序列的第一个值。

    60700

    玩转数据处理120题|Pandas版本

    1 创建DataFrame 题目:将下面的字典创建为DataFrame data = {"grammer":["Python","C","Java","GO",np.nan,"SQL","PHP","Python...难度:⭐⭐ Python解法 df['grammer'].value_counts() 6 缺失值处理 题目:将空值用上下值的平均值填充 难度:⭐⭐⭐ Python解法 # pandas里有一个插值方法...') 备注 请将答案中路径替换为自己机器存储数据的绝对路径,51—80相关习题与该数据有关 52 数据查看 题目:查看数据前三行 难度:⭐ 期望结果 ?...'col2']) # 194.29873905921264 101 数据读取 题目:从CSV文件中读取指定数据 难度:⭐⭐ 备注 从数据1中的前10行中读取positionName, salary两列...进阶修炼120题全部内容,如果能坚持走到这里的读者,我想你已经掌握了处理数据的常用操作,并且在之后的数据分析中碰到相关问题,希望武装了Pandas的你能够从容的解决!

    7.9K41

    pandas | DataFrame基础运算以及空值填充

    也就是说对于对于只在一个DataFrame中缺失的位置会被替换成我们指定的值,如果在两个DataFrame都缺失,那么依然还会是Nan。 ?...fillna会返回一个新的DataFrame,其中所有的Nan值会被替换成我们指定的值。...df3.fillna(3, inplace=True) 除了填充具体的值以外,我们也可以和一些计算结合起来算出来应该填充的值。比如说我们可以计算出某一列的均值、最大值、最小值等各种计算来填充。...fillna这个函数不仅可以使用在DataFrame上,也可以使用在Series上,所以我们可以针对DataFrame中的某一列或者是某些列进行填充: ?...实现这个功能需要用到method这个参数,它有两个接收值,ffill表示用前一行的值来进行填充,bfill表示使用后一行的值填充。 ?

    4.2K20

    【干货】pandas相关工具包

    panel data是经济学中关于多维数据集的一个术语,在Pandas中也提供了panel的数据类型。 Pandas用于广泛的领域,包括金融,经济,统计,分析等学术和商业领域。...在本教程中,我们将学习Python Pandas的各种功能以及如何在实践中使用它们。 2 Pandas 主要特点 快速高效的DataFrame对象,具有默认和自定义的索引。...将数据从不同文件格式加载到内存中的数据对象的工具。 丢失数据的数据对齐和综合处理。 重组和摆动日期集。 基于标签的切片,索引和大数据集的子集。 可以删除或插入来自数据结构的列。...DataFrame:二维的表格型数据结构,很多功能与R中的data.frame类似,可以将DataFrame理解为Series的容器。 Panel :三维数组,可以理解为DataFrame的容器。...下面是本篇文章的主要介绍的内容,就是有关在日常使用提高效率的pandas相关的工具包 4 pandas-profiling 从pandas DataFrame对象中创建HTML形式的分析报告 官方链接

    1.7K20

    利用 pandas 和 xarray 整理气象站点数据

    ,此外,其中有不少特征值比如30XXX代表缺测/微量的情况,用Fortran处理也有不小的麻烦。...一、 目标和步骤 将上图示例的文件处理为(站点,时间)坐标的 nc 格式数据,方便以后直接读取,主要有以下几个步骤: 将文本文件读取为 DataFrame 并将无效值替换为 Nan 将时间信息处理为...['日'].astype(int) ) return pd.to_datetime(time) 具体的处理,包括特征值替换、插入日期列(利用 apply 函数逐行处理,这一步很费时间,...'20-20时降水量'] = np.nan # 替换掉所有特征值 df_t.insert( # 插入日期列,此时并不以此为索引 1, 'Date',df_t.iloc[:, 1...\s 代表空白字符,+ 表示前面的字符至少重复一次(具体查看正则表达式的用法) na_values 选项将把指定的值替换为 Nan parse_dates=False 防止将某些字符解析为日期 StaDir

    5.6K13

    利用 pandas 和 xarray 整理气象站点数据

    用Python处理这种文本列表就需要用上 pandas 库了, xarray 库就是基于 pandas 的,虽然天天在用 xarray ,但是这还是第一次正儿八经用 pandas 处理数据,就当做一次学习的过程啦...一、 目标和步骤 将上图示例的文件处理为(站点,时间)坐标的 nc 格式数据,方便以后直接读取,主要有以下几个步骤: 将文本文件读取为 DataFrame 并将无效值替换为 Nan 将时间信息处理为...['日'].astype(int) ) return pd.to_datetime(time) 具体的处理,包括特征值替换、插入日期列(利用 apply 函数逐行处理,这一步很费时间,...'20-20时降水量'] = np.nan # 替换掉所有特征值 df_t.insert( # 插入日期列,此时并不以此为索引 1, 'Date',df_t.iloc[:, 1...\s 代表空白字符,+ 表示前面的字符至少重复一次(具体查看正则表达式的用法) na_values 选项将把指定的值替换为 Nan parse_dates=False 防止将某些字符解析为日期 StaDir

    10.6K41

    《Pandas Cookbook》第09章 合并Pandas对象

    # 将两个DataFrame放到一个列表中,用pandas的concat方法将它们连接起来 In[24]: s_list = [stocks_2016, stocks_2017] pd.concat...# concat函数默认使用的是外连接,会保留每个DataFrame中的所有行。...) join: DataFrame方法 只能水平连接两个或多个pandas对象 对齐是靠被调用的DataFrame的列索引或行索引和另一个对象的行索引(不能是列索引) 通过笛卡尔积处理重复的索引值 默认是左连接...(也可以设为内连接、外连接和右连接) merge: DataFrame方法 只能水平连接两个DataFrame对象 对齐是靠被调用的DataFrame的列或行索引和另一个DataFrame的列或行索引...通过笛卡尔积处理重复的索引值 默认是内连接(也可以设为左连接、外连接、右连接) # 用户自定义的display_frames函数,可以接收一列DataFrame,然后在一行中显示: In[91]: from

    2.1K10

    针对SAS用户:Python数据分析库pandas

    缺失值的识别 回到DataFrame,我们需要分析所有列的缺失值。Pandas提供四种检测和替换缺失值的方法。...在这种情况下,行"d"被删除,因为它只包含3个非空值。 ? ? 可以插入或替换缺失值,而不是删除行和列。.fillna()方法返回替换空值的Series或DataFrame。...下面的示例将所有NaN替换为零。 ? ? 正如你可以从上面的单元格中的示例看到的,.fillna()函数应用于所有的DataFrame单元格。...我们可能不希望将df["col2"]中的缺失值值替换为零,因为它们是字符串。该方法应用于使用.loc方法的目标列列表。第05章–了解索引中讨论了.loc方法的详细信息。 ? ?...NaN被上面的“上”列替换为相邻单元格。下面的单元格将上面创建的DataFrame df2与使用“后向”填充方法创建的数据框架df10进行对比。 ? ?

    13.5K20

    pandas 文本处理大全(附代码)

    如df.col.str.lower().str.upper(),这个和Dataframe中的一行操作是一个原理 下面正式介绍文本的各种骚操作,基本可以涵盖日常95%的数据清洗需要了,一共 8 个场景。...以下操作均基于下面的数据: import pandas as pd import numpy as np df = pd.DataFrame({'name':['jordon', 'MIKE', 'Kelvin...,如果为None不设置,就会自动把当前序列拼接为一个字符串 sep: 拼接用的分隔符 na_rep: 默认不对空值处理,这里设置空值的替换字符。...会展开返回一个DataFrame,否则返回一个Series # 提取email中的两个内容 df.Email.str.extract(pat='(.*?)...re中的标识,比如re.IGNORECASE na: 对缺失值填充 regex: 是否支持正则,默认True支持 df.Email.str.contains('jordon|com',na='*') -

    1.2K20

    数据分析利器--Pandas

    1、前言 pandas是python数据分析中一个很重要的包; 在学习过程中我们需要预备的知识点有:DataFrame、Series、NumPy、NaN/None; 2、预备知识点详解 NumPy...(参考:Series与DataFrame) NaN/None: python原生的None和pandas, numpy中的numpy.NaN尽管在功能上都是用来标示空缺数据。...更详细的解释参考:Series与DataFrame 3.4 读取CSV文件 data = pd.read_csv("fileName.csv") read_csv()中可以用的参数: 参数 说明 path...(): 将无效值替换成为有效值 具体用法参照:处理无效值 4、Pandas常用函数 函数 用法 DataFrame.duplicated() DataFrame的duplicated方法返回一个布尔型...DataFrame.drop_duplicates() 它用于返回一个移除了重复行的DataFrame DataFrame.fillna() 将无效值替换成为有效值 5、Pandas常用知识点 5.1

    4K30
    领券