首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

智能制造-逆向工程-三维测量-标定

光学三维测量是一项集机械,电气,光学,信息工程技术于一体的前沿技术。该技术应用光学成像原理,对现实世界的物体进行扫描,通过复杂的数据分析、数字图像处理得到目标物体的三维形态数据。该技术几乎不受目标物体的形状限制,经过处理的虚拟数据具有广泛的应用价值。本次设计课题为双目三维光学测量硬件系统设计。本文以格雷码结构光三维测量为编码原理,用SolidWorks建立三维模型,MeshLab处理点云数据图像。硬件方面,除了PC,核心器件为美国德州仪器公司研发的DLP4500系列投影仪,以其先进的DMD(数字微镜器件)技术进行光栅的投射。相位移基本算法:通过采集10张光栅条纹图像相位初值,来获取被测物体的表面三维数据。

02
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    开源 | CVPR2020 通用相机标定模型,全自动、易使用、高精度

    构建3D计算机视觉系统的第一步是进行相机标定。常用的相机参数模型被限制在固定的几个自由度内,因此往往不能更好的适应复杂的真实镜头畸变。相比过去的模型,由于通用化模型的灵活性使其可以非常精确的标定相机。但是这种方法很少在实际中应用。本文提出了一个全自动的、易于使用的,以提高精度为目标的通用模型标定方法,它可以直接替代当前的参数化的相机标定模型。本文与传统的参数化标定模型进行了对比。以立体相机的深度估计和相机姿态估计为例,证明了相机标定误差对结果的影响。因此,与目前普遍使用的标定模型相比,通用标定模型具有更好的结果。

    03

    计算机视觉-相机标定(Camera Calibration)

    在图像测量过程以及机器视觉应用中,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立摄像机成像的几何模型,这些几何模型参数就是摄像机参数。在大多数条件下这些参数必须通过实验与计算才能得到,这个求解参数的过程就称之为相机标定。简单来说是从世界坐标系换到图像坐标系的过程,也就是求最终的投影矩阵 P P P的过程。 无论是在图像测量或者机器视觉应用中,摄像机参数的标定都是非常关键的环节,其标定结果的精度及算法的稳定性直接影响摄像机工作产生结果的准确性。因此,做好摄像机标定是做好后续工作的前提,是提高标定精度是科研工作的重点所在。其标定的目的就是为了相机内参、外参、畸变参数。

    01

    基于双目视觉的树木高度测量方法研究

    随着人工智能时代的到来,计算机视觉领域被广泛应用到各个行业中。同样的,人工智能改变着传统林业的研究方法,林业信息工程技术日渐成熟。针对传统树高测量方法中存在的结果准确性不高、操作困难、专业知识转化为规则困难等问题,采用了一种基于双目立体视觉理论计算树高的方法,实现了树木高度的无接触测量。以双目相机作为采集设备,基于MATLAB、VS2015开发平台,采用张正友单平面棋盘格相机标定方法进行单目标定和双目标定,从而获取双目相机2个镜头的参数。通过SGBM算法和BM算法立体匹配后获得视差深度图像,进而获取树木关键点的三维坐标信息并以此来计算树木高度。将深度学习与双目视觉相结合可以实现树木同时在二维和三维空间的信息提取。在VS2015上的试验结果表明,该方法操作相对简单,并且能够较为准确地测量树木高度,SGBM算法树高测量结果的相对误差范围为0.76%~3.93%,BM算法相对误差范围为0.29%~3.41%。结果表明:采用双目视觉技术测量树木高度可以满足林业工程中对于树高测量的精度需要。

    03
    领券