首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

知识图谱哪里买合适

知识图谱是一种用图谱模型来描述知识和建模世界万物之间关联关系的技术方法。如果您正在寻找购买或构建知识图谱的工具和服务,以下是一些推荐的选项:

推荐的工具或服务

  • KGCloud:这是一个基于云服务的知识图谱构建平台,提供云端众包标注式构建知识图谱及应用。它支持在个人计算机上运行,并且可以轻松地与Neo4j等图数据库集成,便于存储和检索图数据。
  • Jay_KG:这是一个由张涛开发的开源项目,旨在简化和加速知识图谱的构建过程。它采用Python编写,并利用Elasticsearch作为存储后端,提供了一套灵活且高效的API接口,使得开发者可以轻松地进行知识图谱数据的增删改查操作。
  • Neo4j LLM 知识图谱构建器:由Neo4j Labs开发,这款创新应用利用大型语言模型(LLM)的强大能力,可以从各种非结构化数据源中提取实体、关系和属性,并将其存储在Neo4j图数据库中。

知识图谱的应用场景

知识图谱的应用范围非常广泛,包括但不限于搜索引擎增强、智能客服、推荐系统和问答系统等领域。它们能够提升机器语义理解的能力,为计算机理解世界提供更多可能。

在选择知识图谱服务时,考虑您的具体需求和应用场景是非常重要的。不同的服务可能更适合不同的用例,因此建议根据您的项目需求进行评估和选择。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 知识图谱从哪里来:实体关系抽取的现状与未来

    因此,融入知识来进行知识指导的自然语言处理,是通向精细而深度的语言理解的必由之路。然而,这些知识又从哪里来呢?这就涉及到人工智能的一个关键研究问题——知识获取。...知识图谱 现有大型知识图谱,诸如Wikidata、Yago、DBpedia,富含海量世界知识,并以结构化形式存储。如下图所示,每个节点代表现实世界中的某个实体,它们的连边上标记实体间的关系。...但与现实世界快速增长的知识量相比,知识图谱覆盖度仍力有未逮。由于知识规模巨大而人工标注昂贵,这些新知识单靠人力标注添加几无可能完成。...不过,使用已有知识图谱对齐文本来获取数据训练关系抽取模型,再利用该模型来抽取知识加入知识图谱,本身就有一种鸡生蛋与蛋生鸡的味道。...主要研究方向为表示学习、知识图谱和社会计算。

    75440

    知识图谱从哪里来:实体关系抽取的现状与未来

    因此,融入知识来进行知识指导的自然语言处理,是通向精细而深度的语言理解的必由之路。 然而,这些知识又从哪里来呢?这就涉及到人工智能的一个关键研究问题——知识获取。...知识图谱 现有大型知识图谱,诸如Wikidata、Yago、DBpedia,富含海量世界知识,并以结构化形式存储。如下图所示,每个节点代表现实世界中的某个实体,它们的连边上标记实体间的关系。...由于知识规模巨大而人工标注昂贵,这些新知识单靠人力标注添加几无可能完成。为了尽可能及时准确地为知识图谱增添更加丰富的世界知识,研究者们努力探索高效自动获取世界知识的办法,即实体关系抽取技术。...不过,使用已有知识图谱对齐文本来获取数据训练关系抽取模型,再利用该模型来抽取知识加入知识图谱,本身就有一种鸡生蛋与蛋生鸡的味道。...主要研究方向为表示学习、知识图谱和社会计算。

    96920

    知识图谱从哪里来:实体关系抽取的现状与未来

    因此,融入知识来进行知识指导的自然语言处理,是通向精细而深度的语言理解的必由之路。然而,这些知识又从哪里来呢?这就涉及到人工智能的一个关键研究问题——知识获取。...知识图谱 现有大型知识图谱,诸如Wikidata、Yago、DBpedia,富含海量世界知识,并以结构化形式存储。如下图所示,每个节点代表现实世界中的某个实体,它们的连边上标记实体间的关系。...但与现实世界快速增长的知识量相比,知识图谱覆盖度仍力有未逮。由于知识规模巨大而人工标注昂贵,这些新知识单靠人力标注添加几无可能完成。...为了尽可能及时准确地为知识图谱增添更加丰富的世界知识,研究者们努力探索高效自动获取世界知识的办法,即实体关系抽取技术。...不过,使用已有知识图谱对齐文本来获取数据训练关系抽取模型,再利用该模型来抽取知识加入知识图谱,本身就有一种鸡生蛋与蛋生鸡的味道。

    82310

    知识图谱从哪里来:实体关系抽取的现状与未来

    因此,融入知识来进行知识指导的自然语言处理,是通向精细而深度的语言理解的必由之路。然而,这些知识又从哪里来呢?这就涉及到人工智能的一个关键研究问题——知识获取。...知识图谱 现有大型知识图谱,诸如Wikidata、Yago、DBpedia,富含海量世界知识,并以结构化形式存储。如下图所示,每个节点代表现实世界中的某个实体,它们的连边上标记实体间的关系。...但与现实世界快速增长的知识量相比,知识图谱覆盖度仍力有未逮。由于知识规模巨大而人工标注昂贵,这些新知识单靠人力标注添加几无可能完成。...为了尽可能及时准确地为知识图谱增添更加丰富的世界知识,研究者们努力探索高效自动获取世界知识的办法,即实体关系抽取技术。...不过,使用已有知识图谱对齐文本来获取数据训练关系抽取模型,再利用该模型来抽取知识加入知识图谱,本身就有一种鸡生蛋与蛋生鸡的味道。

    52810

    知识图谱从哪里来:实体关系抽取的现状与未来

    因此,融入知识来进行知识指导的自然语言处理,是通向精细而深度的语言理解的必由之路。然而,这些知识又从哪里来呢?这就涉及到人工智能的一个关键研究问题——知识获取。...知识图谱 现有大型知识图谱,诸如Wikidata、Yago、DBpedia,富含海量世界知识,并以结构化形式存储。如下图所示,每个节点代表现实世界中的某个实体,它们的连边上标记实体间的关系。...但与现实世界快速增长的知识量相比,知识图谱覆盖度仍力有未逮。由于知识规模巨大而人工标注昂贵,这些新知识单靠人力标注添加几无可能完成。...为了尽可能及时准确地为知识图谱增添更加丰富的世界知识,研究者们努力探索高效自动获取世界知识的办法,即实体关系抽取技术。...不过,使用已有知识图谱对齐文本来获取数据训练关系抽取模型,再利用该模型来抽取知识加入知识图谱,本身就有一种鸡生蛋与蛋生鸡的味道。

    71820

    知识图谱从哪里来:实体关系抽取的现状与未来

    因此,融入知识来进行知识指导的自然语言处理,是通向精细而深度的语言理解的必由之路。然而,这些知识又从哪里来呢?这就涉及到人工智能的一个关键研究问题——知识获取。...知识图谱 现有大型知识图谱,诸如Wikidata、Yago、DBpedia,富含海量世界知识,并以结构化形式存储。如下图所示,每个节点代表现实世界中的某个实体,它们的连边上标记实体间的关系。...但与现实世界快速增长的知识量相比,知识图谱覆盖度仍力有未逮。由于知识规模巨大而人工标注昂贵,这些新知识单靠人力标注添加几无可能完成。...为了尽可能及时准确地为知识图谱增添更加丰富的世界知识,研究者们努力探索高效自动获取世界知识的办法,即实体关系抽取技术。...不过,使用已有知识图谱对齐文本来获取数据训练关系抽取模型,再利用该模型来抽取知识加入知识图谱,本身就有一种鸡生蛋与蛋生鸡的味道。

    71010

    【NLP】知识图谱从哪里来:实体关系抽取的现状与未来

    因此,融入知识来进行知识指导的自然语言处理,是通向精细而深度的语言理解的必由之路。然而,这些知识又从哪里来呢?这就涉及到人工智能的一个关键研究问题——知识获取。...知识图谱 现有大型知识图谱,诸如Wikidata、Yago、DBpedia,富含海量世界知识,并以结构化形式存储。如下图所示,每个节点代表现实世界中的某个实体,它们的连边上标记实体间的关系。...但与现实世界快速增长的知识量相比,知识图谱覆盖度仍力有未逮。由于知识规模巨大而人工标注昂贵,这些新知识单靠人力标注添加几无可能完成。...为了尽可能及时准确地为知识图谱增添更加丰富的世界知识,研究者们努力探索高效自动获取世界知识的办法,即实体关系抽取技术。...不过,使用已有知识图谱对齐文本来获取数据训练关系抽取模型,再利用该模型来抽取知识加入知识图谱,本身就有一种鸡生蛋与蛋生鸡的味道。

    1.4K10

    【知识图谱】知识推理

    文章目录 一、本体知识推理简介 1、OWL本体语言 2、描述逻辑 (1)描述逻辑系统 (2)描述逻辑的语义 3、知识推理任务分类 (1)可满足性(satisfiability) (2)分类(classification...1、OWL本体语言 OWL的特性: OWL本体语言是知识图谱中最规范(W3C制定)、最严谨(采用描述逻辑)、表达能力最强(是一阶谓词逻辑的子集)的语言; 它基于RDF语法,使表示出来的文档具有语义理解的结构基础...定义:描述概念和关系的知识,被称之为公理(Axiom)。...M a l e \exists \mathrm{has\_child.Male} ∃has_child.Male 描述逻辑与OWL词汇的对应 3、知识推理任务分类 知识推理:通过各种方法获取新的知识或者结论...,这些知识和结论满足语义。

    3.3K21

    【知识图谱】知识表示:知识图谱如何表示结构化的知识?

    如何将这些信息有效组织起来,进行结构化的存储,就是知识图谱的内容。 那么,在知识图谱中以什么样的形式对现实世界中的知识进行表示与存储呢?本编介绍知识图谱中的知识表示,以回答上面的问题。...作者&编辑 | 小Dream哥 1 什么是知识表示 知识表示是知识图谱中非常重要的概念,知识表示之于知识图谱的重要性,就好比内功心法之于绝世武功的重要性。...可见,一种合适的知识表示方法对知识图谱的构建至关重要。 所以,我们在学习知识图谱这个绝世武功之时,也需要熟悉它的内功心法,知识表示。 那么,什么是知识表示呢?...现在流行的知识图谱采用的是哪一套知识表示的方法呢?下面来进行介绍。 2 知识表示的方法 知识图谱,或者说知识系统的研究其实由来已久。...总结 知识图谱是人工智能技术最重要的基础设施,是计算机能够实现推理、预测等类似人类思考能力的关键。在知识图谱中,如何有效表示现实世界中的知识,就是知识表示的内容。

    4.5K21

    【知识图谱系列】动态时序知识图谱EvolveGCN

    背景知识 在上一篇CompGCN中讲解了异质知识图谱在处理复杂实体间多关系类型的方案。...本篇分享知识图谱落地时另一重要场景:动态时序知识图谱,下面先给出动态时序知识图谱的基本概念,方便还不熟悉的同学有一个更好的理解。...简单来说,知识图谱就是把所有不同种类的信息连接在一起而得到的关系网络,比如社交网络。...由于这种关系网络会随着时间推移,实体以及实体间的关系会不断变化,为了全面获取知识,搭建动态知识图谱,在知识图谱数据中加入时间维度,利用时序分析技术和图相似性技术,分析图谱结构随时间的变化和趋势,从而掌握到关键信息...比如金融动态知识图谱,学习到图谱间的时序信息便显得十分重要,本篇便介绍AAAI 2020的一篇解决动态图谱的模型EvolveGCN,EvolveGCN思路较为创新但不是目前SOTA的方案,之后会陆续分享

    4.5K31

    知识图谱入门 , 知识抽取

    知识抽取的概念 知识抽取,即从不同来源、不同结构的数据中进行知识提取,形成知识(结构化数据)存入到知识图谱。大体的任务分类与对应技术如下图所示: ?...远程监督 该方法认为若两个实体如果在知识库中存在某种关系,则包含该两个实体的非结构化句子均能表示出这种关系。如在某知识库中存在“创始人(乔布斯,苹果公司)”。...同时由于是在知识库中抽取存在的实体关系对,因此很难发现新的关系。  ...面向结构化数据的知识抽取 所谓结构化数据就是指类似于关系库中表格那种形式的数据,他们往往各项之间存在明确的关系名称和对应关系。因此我们可以简单的将其转化为RDF或其他形式的知识库内容。...百科类知识抽取 对于百科类数据我们都较为熟悉,下面着重介绍怎么从百科里抽取知识: ? 上图给出从百科里抽取知识的流程介绍。

    3K10

    知识图谱构建

    www.jianshu.com/p/99cbfc1779c6 bootstrpping 半监督学习,语义容易漂移,操作简单不不需要人工标注和斯坦福大学的deepdive差不多,属于半监督关系抽取,抽取非结构化文本构建通用知识图谱...protage集成;RAFox推理机;jean推理 http://www.example.org/kse/finance# 已经做好的知识图谱例子 基于知识图谱的电影自动问答系统 https://...blog.csdn.net/qq_30843221/article/details/54884151 农业领域的知识图谱构建 https://blog.csdn.net/kjcsdnblog/article.../details/79747460 公开知识图谱数据 中文 1复旦知识工厂 2wikidata中文 3zhishi.me 国外 freebase DBpedia yago wolframalpha...启示 界定好范围,明确好场景和问题的定义 知识的定义比较关键,根据场景进行相关领域定义,定义出领域概念层次结构,以及概念之间的关系类型定义 数据是基础,利用好已有数据(百科,以及通用知识图谱)

    7.5K30

    知识图谱入门 , 知识问答

    知识问答简介 问答系统的历史如下图所示: ? 可以看出,整体进程由基于模板到信息检索到基于知识库的问答。基于信息检索的问答算法是基于关键词匹配+信息抽取、浅层语义分析。...基于知识库的问答则基于语义解析和知识库。 根据问答形式可以分为一问一答、交互式问答、阅读理解。...怎样处理大规模的知识图谱 怎样处理分布式数据集上的QA 怎样融合结构化和非结构化的数据 怎样降低维护成本 怎样能快速的复制到不同的领域 知识问答主流方法介绍 KBQA常用的主流方法有 基于模板的方法、基于语义解析的方法...TBSL的主要缺点 创建的模板未必和知识图谱中的数据建模相契合 考虑到数据建模的各种可能性,对应到一个问题的潜在模板数量会非常多,同时手工准备海量模板的代价也非常大。 那模板能否自动生成呢?...逻辑形式通常可分为一元形式和二元形式,一元实体是指对应知识库中的实体,二元实体关系是对应知识库中所有与该实体相关的三元组中的实体对。

    2.2K20
    领券