展开

关键词

Tensorflow笔记|tensorflow线性回归

本系列推送主要参考: Stanford University CS20SI: Tensorflow for Deep Learning Research. 01 — Tensorflow线性回归 前面实现过最小二乘法的线性回归算法 ,梯度下降求解过程,详见文章: 机器学习之线性回归:算法兑现为python代码 那么,借助tensorflow如何实现最小二乘法的线性回归呢? 基本的思路,首先生成拟合的数据集,然后构建线性回归的Graph,最后在Session中迭代train器,得到拟合的参数w和b,画出拟合曲线。 1.2 构建线性回归的Graph w = tf.Variable(tf.random_uniform([1],-1.,1.) 以上就是在tensorflow中基本的线性回归的基本步骤,利用这个最基本的任务,先体会下tensorflow做回归的过程。 以上完整源码,请点击下方“阅读原文”按钮。

54860

Tensorflow笔记 tensorflow线性回归

本系列推送主要参考: Stanford University CS20SI: Tensorflow for Deep Learning Research. 01 — Tensorflow线性回归 前面实现过最小二乘法的线性回归算法 ,梯度下降求解过程,详见文章: 那么,借助tensorflow如何实现最小二乘法的线性回归呢? 基本的思路,首先生成拟合的数据集,然后构建线性回归的Graph,最后在Session中迭代train器,得到拟合的参数w和b,画出拟合曲线。 y_data = [v[1] for v in vectors_set] plt.scatter(x_data,y_data,c='b') plt.show() 产生的数据分布如下所示: 1.2构建线性回归的 以上就是在tensorflow中基本的线性回归的基本步骤,利用这个最基本的任务,先体会下tensorflow做回归的过程。

359100
  • 广告
    关闭

    腾讯云618采购季来袭!

    腾讯云618采购季:2核2G云服务器爆品秒杀低至18元!云产品首单0.8折起,企业用户购买域名1元起,还可一键领取6188元代金券,购后抽奖,iPhone、iPad等你拿!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python scikit-learn 线性回归

    线性回归是简单易用的机器学习算法,scikit-learn是python强大的机器学习库。 本篇文章利用线性回归算法预测波士顿的房价。波士顿房价数据集包含波士顿郊区住房价值的信息。 ? LinearRegressionX = bos.drop('PRICE', axis=1)lm = LinearRegression()lm lm.fit(X, bos.PRICE) print('线性回归算法 w值:', lm.coef_)print('线性回归算法b值: ', lm.intercept_) import matplotlib.font_manager as fmmyfont = fm.FontProperties * 2)print(mse) 21.897779217687486 总结 1 使用.DESCR探索波士顿数据集,业务目标是预测波士顿郊区住房的房价; 2 使用scikit-learn针对整个数据集拟合线性回归模型 思考环节 1 对数据集分割成训练数据集和测试数据集 2 训练数据集训练线性回归模型,利用线性回归模型对测试数据集进行预测 3 计算训练模型的MSE和测试数据集预测结果的MSE 4 绘制测试数据集的残差图

    87640

    线性回归和LSTM股价预测

    79820

    线性回归,LWLR,岭回归,逐步线性回归

    版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。

    31810

    线性回归:简单线性回归详解

    【导读】本文是一篇专门介绍线性回归的技术文章,讨论了机器学习中线性回归的技术细节。线性回归核心思想是获得最能够拟合数据的直线。 文中将线性回归的两种类型:一元线性回归和多元线性回归,本文主要介绍了一元线性回归的技术细节:误差最小化、标准方程系数、使用梯度下降进行优化、残差分析、模型评估等。在文末给出了相关的GitHub地址。 Linear Regression — Detailed View 详细解释线性回归 线性回归用于发现目标与一个或多个预测变量之间的线性关系。 有两种类型的线性回归 – 一元线性回归(Simple)和多元线性回归(Multiple)。 一元线性回归 ---- 一元线性回归对于寻找两个连续变量之间的关系很有用。 使用微分法求极值:将上式分别对alpha 和 beta 一阶偏微分,并令其等于0: ? 此二元一次线性方程组可用克莱姆法则求解,得解 ? 和 ? : ? ? 探索 ? : • 如果 ?

    81280

    线性回归

    线性回归 下面我们用一个预测房价的例子来说明。 由此我们可以看出,房价和人口百分比成反比,与房间数成正比 通过梯度下降法计算回归参数,实现线性回归模型 关于梯度下降可以参看这篇文章 import numpy as np class LinearRegressionByMyself 使用sklearn实现线性回归模型 from sklearn.linear_model import LinearRegression sk_model = LinearRegression() sk_model.fit Regression_plot(X, y, sk_model) plt.xlabel('Percentage of the population') plt.ylabel('House price') plt.show() 评估线性回归模型 y_line_fit = Linear_model.predict(X_fit) linear_r2 = r2_score(y, Linear_model.predict(X)) #二次模型,先二次变换再线性回归

    60470

    线性回归

    线性模型、线性回归与广义线性模型 逻辑回归 工程应用经验 数据案例讲解 1. 线性模型、线性回归与广义线性回归 ---- 1.1 线性模型 ? image 简单、基本、可解释性好 1.2 线性回归 ? image 有监督学习→学习样本为 ? 这个孩子会怎么呢? ? image 他有可能会通过观察大家的 身高 和 体格 来排队。 image 1.3 广义线性模型 对于样本 ? image 如果我们希望用线性的映射关系去逼近y值 可以得到线性回归模型 ? image 有时候关系不一定是线性的 如何逼近y 的衍生物? image 则得到对数线性回归 (log-linear regression) 实际是在用 ? image 逼近y ?

    45230

    线性回归

    线性回归 对于线性回归,首先需要去理解其基本概念。可将“线性回归”拆分为“线性”和“回归”两个词来理解。 1.线性和非线性 线性:两个变量成一次函数关系,在图像上表现为图像为直线。 非线性:与线性相对,两个变量不是一次函数关系,图像不是直线。 2.回归 确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。 回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。 欠拟合和过拟合在回归上表现为:一个预测结果偏离真实值,一个预测结果过分接近真实值。 其中过拟合没找到例子就用原直线了。 ? 实现线性回归 理论结束,我们现在开始写代码,实现一元线性回归。 总结 以上只演示了线性回归(一元),对于多元回归,思路都是一样的,大致实现也差不多,只需要把高维数据处理一下即可,在这里就不再说了。毕竟本文是讲线性回归

    18620

    线性回归

    2、线性拟合 #! learning_rate = 0.01 training_epochs = 100 # 初始化线性模拟数据 x_train = np.linspace(-1, 1, 101) y_train = 将输入和输出节点设置为占位符,而真实数值将传入 x_train 和 y_train X = tf.placeholder("float") Y = tf.placeholder("float") # 将回归模型定义为 # 定义成本函数 y_model = model(X, w) #tf.square()是对每一个元素求平方 cost = tf.square(Y - y_model) # 有了线性模型、成本函数和数据

    22710

    线性回归

    理论 回归问题通常用于连续值的预测,可以总结为给定x, 想办法得到f(x),使得f(x)的值尽可能逼近对应x的真实值y。 假设,输入变量x与输出值y成线性关系,比如随着年龄(x)增大, 患癌症的概率(y)也会逐渐增大。

    8030

    线性回归

    线性回归是一种回归分析技术,回归分析本质上就是一个函数估计的问题(函数估计包括参数估计和非参数估计),就是找出因变量和自变量之间的因果关系。 回归分析的因变量是应该是连续变量,若因变量为离散变量,则问题转化为分类问题,回归分析是一个有监督学习问题。 线性其实就是一系列一次特征的线性组合,在二维空间中是一条直线,在三维空间中是一个平面,然后推广到n维空间,可以理解高维广义线性吧。线性回归实现和计算都比较简单,但是不能拟合非线性数据。 predict, import numpy as np from sklearn.linear_model import LinearRegression # sklearn框架,lingear_model线性模型

    20610

    线性回归

    终于拿到了美国波士顿麻省理工学院的研究生录取通知书,在远离家乡的地方上学,Alex想在波士顿买一套房子,他手头有一些积蓄,在网上找了几套自己满意的房子,但是又不敢相信网上的价格,人生地不熟的,Alex怕被宰,就从自己数据分析的朋友 设:$$y=ax_1+b_x2$$ 这公式那么一写阿,瞅起来像是一个线性模型,简单理解也就是一条线嘛。 有了公式,现在回头来看看真实的问题和真实的数据该怎么处理: House Prices: Advanced Regression Techniques 房价:先进的回归技术 housing = pd.read_csv connected to property 地块临街:连接到地产的街道的直线英尺 [在这里插入图片描述] 终于找到一个含有缺失值的了,LotFrontage列含有259个缺失值,这时候,我们需要对缺失值填充 submisson.csv", index=False) 我们把submission提交到Kaggle的平台上,看看能获得什么样的分数: [在这里插入图片描述] 结果显示并不是很好,当然,我们还有好多因素没有考虑,不过,线性回归

    23420

    线性回归

    统计学习方法 算法(线性回归) 策略(损失函数) 优化(找到最小损失对于的W值) 线性回归 寻找一种能预测的趋势 线性关系 二维:直线关系 三维:特征,目标值,平面当中 线性关系定义 h(w)=w0 = std_y.inverse_transform(lr.predict(x_test)) # std_y.inverse_transform() 转换数据 print(lr.coef_) # 显示回归系数 梯度下降预测结果返回的是一维数组 需要转换 sdg_p = std_y.inverse_transform(sgd.predict(x_test).reshape(-1,1)) print(sgd.coef_) # 显示回归系数

    10760

    线性回归

    于是我又找到吴恩达的Marchine Learning课程,再次学习了线性回归和Logistic回归。 Machine Leanring这门课程是先从线性回归讲起,然后再介绍的Logistic回归,个人感觉这样的次序更容易理解。 《机器学习实战》这本书也有线性回归的内容,不过放在比较后面的第8章,而且书中给出的解法是直接求解法,并没有采用梯度下降算法。 线性回归 在[机器学习实战札记] Logistic回归中,我们了解到回归的定义,其目的是预测数值型的目标值,最直接的方法是依据输入写出一个目标值的计算公式。 一旦有了这些回归系统,再给定输入,预测就非常容易。 回归中使用得最多的就是线性回归,而非线性回归问题也可以经过变化,简化为线性回归问题。比如有如下图所示的数据集: ? 可以通过引入高阶多项式: ?

    23230

    线性回归

    线性回归 线性回归预测函数: 逻辑回归预测函数: 线性回归损失函数: 逻辑回归损失函数: MSE直接应用到LR中会导致损失函数变成非凸函数,所以我们加入log让损失函数变成了凸函数 二项分布中): 非二项分布: 损失函数(经验损失+结构损失): 两者损失函数求导后,除了假设函数不一样,表示形式是一样的: 损失函数中参数倍数变化并不会影响最优值的最终结果 1.1 逻辑回归 sigmiod 其中\theta是收敛之后得到的结果 根据sigmoid曲线,h_{\theta}≥0时,置为1;否则置为0 1.1.1.1 决策边界 1.1.2 代价函数 当我们把线性回归的代价函数放到逻辑回归上使用时 分析 化简 得到如下结果,使用了==极大似然法==(能够在统计学中能为不同模型快速寻找参数),并且结果是凸函数 参数梯度下降: ==可以发现,求导后线性回归和逻辑回归的公式是一样的,但是他们的假设函数 训练多个逻辑回归分类器,然后将输入放到各分类器中,将输入归类为得分值最大的类别即可 1.4 过拟合和欠拟合解决 1.4.1 过拟合 适当减少多余的参数 使用正则化,适当减少参数维度(阶/次方)/大小

    10520

    线性回归(一)-多元线性回归原理介绍

    若多个变量的的取值与目标函数取值仍呈现线性关系,则可以使用多元线性回归进行建模预测。本文将从一元线性回归推广到多元线性回归。 -- more --> 多元线性回归理论 从一元线性回归讲起 假设有一个分布列,如下表所示: 0 1 2 3 4 5 6 7 8 9 Y 6.7 7.2 10.3 12.4 15.1 17.6 19.4 对于一次函数的线性回归模型,我们需要检验回归得到的系数是否显著,同时要检验回归得到的方程是否显著。 若求得的t统计量不在置信区间内,则可以拒绝原假设,即通过回归系数的t检验,回归系数是显著的,X和Y存在线性关系。 总结 对于一元线性回归来说,首先需要求根据残差平方和的取值最小来估计回归参数。

    1.9K00

    线性回归与逻辑回归

    在读研期间,一直在帮导师技术开发,甚至偶尔美工(帮导师和实验室博士生画个图啥的),算法还是较少接触的,其实,我发现,算法还是蛮好玩的,昨晚看了B站一个美女算法工程师讲了线性回归和逻辑回归两种算法 ,下总结吧,不然看了之后过两天就抛在脑后,忘光光了。。 概念2:线性回归详解与实例。 1)线性回归:用一个直线较为精准的描述数据之间的关系,每当出现新的数据时(X),可以预测出一个对应的输出值(Y)。 概念3:逻辑回归详解。 细说:逻辑回归是在线性回归的基础上嵌套了一个sigmoid函数,目的是将线性回归函数的结果映射到sigmoid函数中(如下图)。 我们知道,线性回归的模型是求出输出特征向量Y和输入样本矩阵X之间的线性关系系数 θ,满足 Y =Xθ。此时我们的Y是连续的,所以是回归模型。 如果我们想要Y是离散的话,怎么办呢?

    34910

    线性回归算法

    以下文章来源于数据思践 ,作者王路情 导读 阅读完本文,你可以知道: 1 线性回归是什么以及有什么用 2 基于Python和库执行线性回归算法 1 概述 1 什么是回归? 3 什么是线性回归(Linear Regression)? 线性回归是最重要和最广泛应用的回归技术之一。 它是最简单的回归方法。 它易于理解模型和解释结果。 4 线性回归的问题定义? ? 5 线性回归的性能分析? ? 2 线性回归的原理 线性回归的原理就是拟合一条直线或者一个超平面,使得实际值与预测值的平方最小。 ? = data).fit() print('线性回归模型的拟合优度指标', lm.rsquared) print('线性回归模型的学习参数\n', lm.params) print('线性回归模型的均方误差 2 线性回归算法在设计和构建模型的时候做了强的假设,即自变量与因变量之间满足线性关系,因而在使用这种方式之前,需要根据实际问题检验线性假设的合理性。 关于线性回归算法,您有什么想法请留言。

    39720

    多元线性回归

    ◆ ◆ ◆ ◆ ◆ 什么是多元线性回归回归分析中,如果有两个或两个以上的自变量,就称为多元回归。 因此多元线性回归比一元线性回归的实用意义更大。 inline plt.style.use('ggplot') #使用ggplot样式from sklearn.linear_model import LinearRegression # 导入线性回归 data.sales x_train,x_test,y_train,y_test = train_test_split(x, y) #得到训练和测试训练集model = LinearRegression() #导入线性回归

    38020

    相关产品

    • 时序数据库 CTSDB

      时序数据库 CTSDB

      腾讯云时序数据库(CTSDB)是一种高效、安全、易用的云上时序数据存储服务。特别适用于物联网、大数据和互联网监控等拥有海量时序数据的场景。您可以根据实际业务需求快速创建CTSDB 实例,并随着业务变化实时线性扩展实例。CTSDB 为您提供高性能的数据读写服务,满足您业务快速发展的需求。

    相关资讯

    热门标签

    扫码关注云+社区

    领取腾讯云代金券