该神经网络的输出层有 3 个神经元,分别输出 y1、y2、y3。 输入形状—它是我们传递到输入层的输入矩阵的形状。我们的神经网络的输入层有 4 个神经元,它预计 1 个样本中的 4 个值。...为了计算误差我们对比了带有真实输出值的预测值。我们使用一个损失函数(下文提及)计算误差值。接着我们计算每个误差值的导数和神经网络的每个权重。...反向传播运用微分学中的链式法则,在其中我们首先计算最后一层中每个误差值的导数。我们调用这些导数、梯度,并使用这些梯度值计算倒数第二层的梯度,并重复这一过程直到获得梯度以及每个权重。...接着我们从权重值中减去这一梯度值以降低误差。通过这种方式我们不断接近局部最小值(即最小损失)。 ? 学习率—训练神经网络的时候通常会使用梯度下降优化权重。...在每一次迭代中使用反向传播计算损失函数对每一个权重的导数,并从当前权重减去导数和学习率的乘积。学习率决定了更新权重(参数)值的快慢。
如果我们提供100个样品,则输入形状将为(100,4,1)。不同的库期望形状的格式是不同的。 权重(参数) – 权重表示单元之间连接的强度。...然后我们计算神经网络中每一个误差值的导数和每一个权重。反向传播使用微分学的链式法则。在链条法则中,首先我们计算对应最后一层权值的误差值的导数。...我们称这些导数为:梯度,然后使用这些梯度值来计算倒数第二层的梯度。重复此过程,直到我们得到神经网络中每个权重的梯度。然后从权值中减去该梯度值,以减少误差值。...这样,我们就更接近(下降)局部最小值(也就是说最小的损失)。 学习率 – 当我们训练神经网络时,我们通常使用梯度下降法来优化权重。...categorical_crossentropy:用于多类的对数损失(logloss)。 模型优化器 – 优化器是一种用于更新模型中权重的搜索技术。 SGD:随机梯度下降,支持动量。
API-Explorer 人脸检测与分析调用接口:API 3.0 Explorer 五官定位demo体验:https://cloud.tencent.com/act/event/iaidemo image.png •人脸对齐是将不同角度的人脸图像对齐成同一种标准的形状...l输入数据和相应的目标。 l损失函数,即用于学习的反馈信号。 l优化器,决定学习过程如何进行。 image.png 梯度(gradient)是张量运算的导数。它是导数这一概念向多元函数导数的推广。...f 在 W0 点的导数是一个张量 gradient(f)(W0) ,其形状与 W 相同,每个系数 gradient(f)(W0)[i, j] 表示改变 W0[i, j] 时 loss_value 变化的方向和大小...image.png 描述的是一维参数空间中的梯度下降,但在实践中需要在高维空间中使用梯度下降。 神经网络的每一个权重参数都是空间中的一个自由维度,网络中可能包含数万个甚至上百万个 参数维度。...image.png 此外,SGD 还有多种变体,其区别在于计算下一次权重更新时还要考虑上一次权重更新, 而不是仅仅考虑当前梯度值,比如带动量的 SGD、Adagrad、RMSProp 等变体。
2.2.1 逻辑回归的代价函数 image.png 2.3 梯度下降 image.png 2.3.1 逻辑回归中的梯度下降 在逻辑回归中,梯度下降涉及到复合求导,需要基于链式法则求解。...广播机制的原理参考下图: ? Tip3: 关于矩阵 shape 的问题:如果不指定一个矩阵的 shape,将生成 "rank 1 array",会导致其 shape 为 (m, ),无法进行转置。...计算中涉及到的各个变量及其大小如下: W1 是隐藏层的参数矩阵, 其形状为 (noOfHiddenNeurons, nx) b1 是隐藏层的参数矩阵, 其形状为 (noOfHiddenNeurons,..., 1) W2 是输出层的参数矩阵,其形状为 (1, noOfHiddenNeurons) b2 是输出层的参数矩阵,其形状为 (1, 1) z2 是 z2 = W2*a1 + b 的计算结果,其形状为...如果在神经网络中将所有权重初始化为0,那么神经网络将不能正常工作:所有隐藏层会完全同步变化(计算同一个函数),每次梯度下降迭代所有隐藏层会进行相同的更新。注意 bias 初始化为0是可以的。
理解深度学习需要熟悉一些简单的数学概念:Tensors(张量)、Tensor operations 张量操作、differentiation微分、gradient descent 梯度下降等等。...基于梯度的优化算法 神经网络层对输入进行的数学转换为: \(output = relu(dot(W, input) + b)\) 张量\(W\)和张量\(b\) 是网络层的参数,被称为网络层的权重系数或者可训练参数...随机梯度下降 一个可微分函数,理论上能够找到它的最小值:最小值点导数为0,所以需要找到所有导数为0的点,然后相互比较找到最小值。 神经网络中,意味着找到一组权重值,使损失函数最小。...随机是指每个小批量batch是随机在数据中挑选的。 小批量随机梯度下降的一种极端情况是随机梯度下降算法---全部数据形成一个批量,计算结果更准确,但效率比较低。...小结 学习指在训练数据上找到一组权重值使得损失函数最小; 学习过程:在小批量数据上计算损失函数对应权重系数的梯度值;之后权重系数沿着梯度的反方向移动; 学习过程的可能性是基于神经网络是一系列张量操作,因此能够使用导数的链式法则计算损失函数对应权重系数的梯度值
上节课我们主要介绍了向量化、矩阵计算的方法和python编程的相关技巧。并以逻辑回归为例,将其算法流程包括梯度下降转换为向量化的形式,从而大大提高了程序运算速度。...对于隐藏层,选择ReLU作为激活函数能够保证z大于零时梯度始终为1,从而提高神经网络梯度下降算法运算速度。但当z小于零时,存在梯度为0的缺点,实际应用中,这个缺点影响不是很大。...8 Derivatives of activation functions 在梯度下降反向计算过程中少不了计算激活函数的导数即梯度。...总结一下,浅层神经网络(包含一个隐藏层),m个训练样本的正向传播过程和反向传播过程分别包含了6个表达式,其向量化矩阵形式如下图所示: 11 Random Initialization 神经网络模型中的参数权重...激活函数必须是非线性的,不然神经网络模型起不了任何作用。然后,我们重点介绍了神经网络的反向传播过程以及各个参数的导数推导,并以矩阵形式表示出来。
关于张量、张量运算、批量、梯度优化、随机梯度下降这几个概念和Dense的一些参数,简单而又难以理解的几个名词,花了几天时间才看了个七七八八,尤其是Dense的输入输出参数、权重和偏置向量是如何发挥作用的...# 形状:这是一个整数元组,表示张量沿每个轴的维度大小(元素个数)。例如,前面矩阵示例的形状为(3, 5),3D 张量示例的形状为(3, 3, 5)。...#(3) 计算网络在这批数据上的损失,用于衡量y_pred 和y 之间的距离。 #(4) 更新网络的所有权重,使网络在这批数据上的损失略微下降。 #梯度(gradient)是张量运算的导数。...# 随机梯度下降,给定一个可微函数,理论上可以用解析法找到它的最小值: # 函数的最小值是导数为0 的点,因此你只需找到所有导数为0 的点,然后计算函数在其中哪个点具有最小值。...#整个学习过程之所以能够实现,是因为神经网络是一系列可微分的张量运算,因此可以利用求导的链式法则来得到梯度函数,这个函数将当前参数和当前数据批量映射为一个梯度值。
优化目标函数的自变量是各层的权重矩阵和梯度向量,一般情况下无法保证目标函数是凸函数,因此这不是一个凸优化问题,有陷入局部极小值和鞍点的风险(对于这些概念和问题,SIGAI之前的公众号文章“理解梯度下降法...可以使用梯度下降法进行求解,使用梯度下降法需要计算出损失函数对所有权重矩阵、偏置向量的梯度值,接下来的关键是这些梯度值的计算。在这里我们先将问题简化,只考虑对单个样本的损失函数: ?...偏置项的导数由两部分组成,分别是神经网络预测值与真实值之间的误差,激活函数的导数值,与权重矩阵的偏导数相比唯一的区别是少了yT。...的各层,计算第l层每个节点的误差: ? 4.根据误差计算损失函数对权重的梯度值: ? 对偏置的梯度为: ? 5.用梯度下降法更新权重和偏置: ?...实现时需要在正向传播时记住每一层的输入向量x(l-1),本层的激活函数导数值 ? 。 神经网络的训练算法可以总结为: 复合函数求导+梯度下降法 训练算法有两个版本:批量模式和单样本模式。
在任意点 A,损失函数能分别对权重求一阶偏导数和二阶偏导数。损失函数的一阶偏导可以使用梯度算符来表示,其中每一个权重的损失函数梯度表示如下: ?...同样,损失函数的二阶偏导可以使用海塞矩阵(Hessian matrix)来表示,以下就是损失函数对权重向量每个元素的二阶偏导数: ?...下面,本文将描述在神经网络中最重要的学习算法。 ? 梯度下降 梯度下降,又称为最速下降法是一种非常简单和直观的训练算法。该算法从梯度向量中获取优化信息,因此其为一阶算法(通过一阶偏导求最优权重)。...在训练大规模神经网络时,因为有上万的参数,所以梯度下降法是比较有效的。因为梯度下降算法储存的梯度算符向量规模为 n,而海塞矩阵储存的规模就为 n^2 了,同时梯度和海塞矩阵的计算量也是天差地别。...牛顿法 牛顿法是二阶算法,因为该算法使用了海塞矩阵(Hessian matrix)求权重的二阶偏导数。牛顿法的目标就是采用损失函数的二阶偏导数寻找更好的训练方向。
上节课我们主要介绍了向量化、矩阵计算的方法和python编程的相关技巧。并以逻辑回归为例,将其算法流程包括梯度下降转换为向量化的形式,从而大大提高了程序运算速度。...前面的课程中,我们已经使用计算图的方式介绍了逻辑回归梯度下降算法的正向传播和反向传播两个过程。如下图所示。...对于隐藏层,选择ReLU作为激活函数能够保证z大于零时梯度始终为1,从而提高神经网络梯度下降算法运算速度。但当z小于零时,存在梯度为0的缺点,实际应用中,这个缺点影响不是很大。...Derivatives of activation functions 在梯度下降反向计算过程中少不了计算激活函数的导数即梯度。...激活函数必须是非线性的,不然神经网络模型起不了任何作用。然后,我们重点介绍了神经网络的反向传播过程以及各个参数的导数推导,并以矩阵形式表示出来。
根据矩阵乘法,它只能是 XT(A−Y)X^T(A - Y)。 注: 严格来讲,向量化的导数应该称为梯度。这个笔记中不区分这两个术语。...梯度下降法 在代数中,如果我们需要求出一个凸函数的最值,我们可能会使导数等于 0,然后解出方程。但在机器学习中,我们使用梯度下降法来求凸函数的最值。...梯度下降法是,对于每个自变量 xx,迭代执行以下操作: x:=x−αdydx x := x - \alpha \frac{dy}{dx} 其中 α\alpha 是学习率,一般选取 0 ~ 1 之间的值...这是一个一元函数,它的形状是一个碗,或者山谷。 我们可以随便选一个点作为初始值。你可以选0,也可以选1或者随机值。这个无所谓,因为函数是凸的,沿任意路径下降都会达到全局最优值。...多元的凸函数是这样。如果你的每个自变量都减去它的导数(梯度)的一部分,那么所有自变量就相当于向着最陡的方向移动了一小步。如果你在一个山谷中,沿着最陡的方向向下走,就会到达谷底。
误差项衡量神经网络模型在训练数据集上的拟合程度,而正则项则是控制模型的复杂程度,防止出现过拟合现象。 损失函数的函数值由模型的参数(权重值和偏置值)所决定。...我们可以把两部分参数合并为一个n维的权重向量,记为w。下图是损失函数f(w)的图示。 如上图所示,w*是损失函数的最小值。在空间内任意选择一个点A,我们都能计算得到损失函数的一阶、二阶导数。...该近似值仅使用损失函数的一阶导数的信息来计算。 Hessian矩阵由损失函数的二阶偏导数组成。拟牛顿法背后的主要思想是仅使用损失函数的一阶偏导数,通过另一矩阵G得到近似Hessian矩阵的逆。...最后,对于非常大的数据集和神经网络,Jacobian矩阵会变得非常大,因此需要的内存也非常大。因此,当数据集和/或神经网络非常大时,不推荐使用Levenberg-Marquardt算法。...总而言之,如果我们的神经网络有成千上万的参数,我们可以使用梯度下降法或共轭梯度法,以节省内存。
目录 前向传播与反向传播回顾 梯度消失与梯度爆炸 激活函数的影响 权重矩阵的影响 不良初始化 参考 博客:blog.shinelee.me | 博客园 | CSDN 前向传播与反向传播回顾 神经网络的训练过程可以简化成以下步骤...仔细观察上式,偏导为一串因子的乘积,因子中的每一项对乘积结果都有影响,有几点需要注意,回传时, image.png 梯度消失与梯度爆炸 梯度为偏导数构成的向量。...损失函数收敛至极小值时,梯度为0(接近0),损失函数不再下降。我们不希望在抵达极小值前,梯度就为0了,也不希望下降过程过于震荡,甚至不收敛。...训练阶段,权重在不断调整,每一层的输入输出也在不断变化,梯度消失和梯度爆炸可能发生在训练的一开始、也可能发生在训练的过程中。 因子项中当前层的输入仅出现一次,下面着重看一下激活函数和权重的影响。...权重矩阵的影响 假设激活函数为线性,就像ReLU的正向部分,导数全为1。则一个简化版本的全连接神经网络如下图所示, ?
神经网络犯大量错误时,损失很高;神经网络犯错较少时,损失较低。训练目标就是找到使训练集上的损失函数最小化的权重矩阵和偏置向量。 在下图中,损失函数的形状像一个碗。...在训练过程的任一点上,损失函数关于梯度的偏导数是那个位置的梯度。沿偏导数预测的方向移动,就可以到达谷底,使损失函数最小化。使用函数的偏导数迭代地寻找局部极小值的方法叫作梯度下降。...人工神经网络中的权重使用反向传播的方法进行更新。损失函数关于梯度的偏导数也用于更新权重。从某种意义上来说,神经网络中的误差根据求导的链式法则执行反向传播。...神经网络使用 Sigmoid 激活函数进行反向传播时,输出接近 0 或 1 的神经元其梯度趋近于 0。这些神经元叫作饱和神经元。因此,这些神经元的权重不会更新。...根据上图,我们可以观察到在 x 轴的负区域曲线的形状与 ReLU 激活函数不同,因此,Swish 激活函数的输出可能下降,即使在输入值增大的情况下。
目前深度神经网络模型的优化方法主要是梯度下降。我们使用梯度下降的方法来进行误差的反向传播,不断地调整模型参数,以降低模型所产生的误差,使模型更好实现从输入到输出的映射。...V是权重参数W矩阵特征向量构成的矩阵,是由权重参数W矩阵的特征值λ构成的对角矩阵。 若λ>1,W容易产生一个极大的数值,导致梯度爆炸。 若λ梯度消失。...解决梯度消散和梯度爆炸问题的方法 选择合适的激活函数 在误差反向传播过程中,需要对激活函数进行多次求导,此时,激活函数的导数大小可以直接影响梯度下降的效果,过小容易产生梯度消散,过大容易产生梯度爆炸...不建议大家使用sigmoid和tanh等激活函数,因为它们的导数在大部分区域都是非常小的,容易导致梯度消散的问题。如图所示。 ?...选择合适的参数初始化方法 image.png image.png 使用权重参数正则化 使用权重参数正则化可以减少梯度爆炸发生的概率,常用的正则化方式就是L1或者L2正则化。
神经网络犯大量错误时,损失很高;神经网络犯错较少时,损失较低。训练目标就是找到使训练集上的损失函数最小化的权重矩阵和偏置向量。 在下图中,损失函数的形状像一个碗。...在训练过程的任一点上,损失函数关于梯度的偏导数是那个位置的梯度。沿偏导数预测的方向移动,就可以到达谷底,使损失函数最小化。使用函数的偏导数迭代地寻找局部极小值的方法叫作梯度下降。 ?...人工神经网络中的权重使用反向传播的方法进行更新。损失函数关于梯度的偏导数也用于更新权重。从某种意义上来说,神经网络中的误差根据求导的链式法则执行反向传播。...神经网络使用 Sigmoid 激活函数进行反向传播时,输出接近 0 或 1 的神经元其梯度趋近于 0。这些神经元叫作饱和神经元。因此,这些神经元的权重不会更新。...根据上图,我们可以观察到在 x 轴的负区域曲线的形状与 ReLU 激活函数不同,因此,Swish 激活函数的输出可能下降,即使在输入值增大的情况下。
公式中, 是学习率,即参数更新的速度,如果学习率太大则容易振荡,不容易收敛,太小则收敛速度又会过慢。 各层的导数又被称为梯度,参数沿着梯度方向下降,又被成为梯度下降法。...反向传播 输入:对于反向传播,输入有三部分:i 层输出 ;第 i 层的模型权重 、;损失对 i 层输出的导数 。 输出:根据链式法则,可以求出损失对 i 层模型权重的导数 、,也就是梯度。...更新模型权重 得到梯度后,需要沿着梯度下降的方向更新模型权重。...如果是最简单的梯度下降法,优化器直接在模型原有权重基础上做减法,不需要额外保存状态,比如: 复杂一点的优化器,比如 Adam, 在梯度下降时引入了动量的概念。...动量是梯度的指数移动平均,需要维护一个梯度的移动平均矩阵,这个矩阵就是优化器的状态。因此,优化器状态、原来的模型权重和梯度共同作为输入,可以得到更新后的模型权重。至此才能完成一轮模型的训练。
领取专属 10元无门槛券
手把手带您无忧上云