首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

窗口分辨率更改后,制表器表不会调整大小

是因为制表器表的大小通常是基于固定的像素值来定义的,而不是根据窗口分辨率的变化来自动调整大小的。这可能导致在较低的分辨率下,表格内容可能会超出窗口的可见区域,而在较高的分辨率下,表格可能会显得过于小而难以阅读。

为了解决这个问题,可以考虑以下几种方法:

  1. 响应式设计:使用响应式设计的技术和框架,如CSS媒体查询,可以根据不同的窗口分辨率自动调整表格的大小和布局。这样可以确保表格在不同分辨率下都能够适应并展示良好。
  2. 滚动条:如果表格内容过多,可以考虑在表格周围添加一个滚动条,以便用户可以滚动查看表格的全部内容。这样无论窗口分辨率如何变化,表格都可以保持固定大小,而用户可以通过滚动条来查看完整的表格内容。
  3. 缩放功能:提供一个缩放功能,允许用户手动调整表格的大小。这样用户可以根据自己的需求和窗口分辨率来自定义表格的大小,以便更好地查看和操作表格内容。

总结起来,为了解决窗口分辨率更改后制表器表不会调整大小的问题,可以采用响应式设计、滚动条和缩放功能等方法来确保表格在不同分辨率下都能够适应并展示良好。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

SegNetr来啦 | 超越UNeXit/U-Net/U-Net++/SegNet,精度更高模型更小的UNet家族

在本文中,作者重新思考了上述问题,并构建了一个轻量级的医学图像分割网络,称为SegNetr。具体来说,作者介绍了一种新的SegNetr块,它可以在任何阶段动态执行局部全局交互,并且只有线性复杂性。同时,作者设计了一种通用的 Information Retention Skip Connection(IRSC),以保留编码器特征的空间位置信息,并实现与解码器特征的精确融合。 作者在4个主流医学图像分割数据集上验证了SegNetr的有效性,与普通U-Net相比,参数和GFLOP分别减少了59%和76%,同时实现了与最先进方法相当的分割性能。值得注意的是,本文提出的组件也可以应用于其他U-shaped网络,以提高其分割性能。

03

cvpr目标检测_目标检测指标

Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But recent deep learning object detectors have avoided pyramid representations, in part because they are compute and memory intensive. In this paper , we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A topdown architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using FPN in a basic Faster R-CNN system, our method achieves state-of-the-art singlemodel results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 6 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available.

04

StyleSwin: Transformer-based GAN for High-resolution Image Generation

尽管Transformer在广泛的视觉任务中取得了诱人的成功,但在高分辨率图像生成建模方面,Transformer还没有表现出与ConvNets同等的能力。在本文中,我们试图探索使用Transformer来构建用于高分辨率图像合成的生成对抗性网络。为此,我们认为局部注意力对于在计算效率和建模能力之间取得平衡至关重要。因此,所提出的生成器在基于风格的架构中采用了Swin Transformer。为了实现更大的感受野,我们提出了双重关注,它同时利用了局部窗口和偏移窗口的上下文,从而提高了生成质量。此外,我们表明,提供基于窗口的Transformer中丢失的绝对位置的知识极大地有利于生成质量。所提出的StyleSwan可扩展到高分辨率,粗糙的几何结构和精细的结构都得益于Transformer的强大表现力。然而,在高分辨率合成期间会出现块伪影,因为以块方式执行局部关注可能会破坏空间相干性。为了解决这个问题,我们实证研究了各种解决方案,其中我们发现使用小波鉴别器来检查频谱差异可以有效地抑制伪影。大量实验表明,它优于现有的基于Transformer的GANs,尤其是在高分辨率(例如1024×1024)方面。StyleWin在没有复杂训练策略的情况下,在CelebA HQ 1024上优于StyleGAN,在FFHQ-1024上实现了同等性能,证明了使用Transformer生成高分辨率图像的前景。

02

Feature Pyramid Networks for Object Detection

特征金字塔是不同尺度目标识别系统的基本组成部分。但最近的深度学习对象检测器已经避免了金字塔表示,部分原因是它们需要大量的计算和内存。本文利用深卷积网络固有的多尺度金字塔结构构造了具有边际额外成本的特征金字塔。提出了一种具有横向连接的自顶向下体系结构,用于在所有尺度上构建高级语义特征图。该体系结构称为特征金字塔网络(FPN),作为一种通用的特征提取器,它在几个应用程序中得到了显著的改进。在一个基本的Fasater R-CNN系统中使用FPN,我们的方法在COCO检测基准上实现了最先进的单模型结果,没有任何附加条件,超过了所有现有的单模型条目,包括来自COCO 2016挑战赛冠军的条目。此外,我们的方法可以在GPU上以每秒6帧的速度运行,因此是一种实用而准确的多尺度目标检测解决方案。

02

Super-Resolution on Object Detection Performance in Satellite Imagery

探讨了超分辨率技术在卫星图像中的应用,以及这些技术对目标检测算法性能的影响。具体来说,我们提高了卫星图像的固有分辨率,并测试我们能否以比固有分辨率更高的精度识别各种类型的车辆、飞机和船只。使用非常深的超分辨率(VDSR)框架和自定义随机森林超分辨率(RFSR)框架,我们生成了2×、4×和8×的增强级别,超过5个不同的分辨率,范围从30厘米到4.8米不等。使用本地和超解析数据,然后使用SIMRDWN对象检测框架训练几个定制的检测模型。SIMRDWN将许多流行的目标检测算法(如SSD、YOLO)组合成一个统一的框架,用于快速检测大型卫星图像中的目标。这种方法允许我们量化超分辨率技术对跨多个类和分辨率的对象检测性能的影响。我们还量化了目标检测的性能作为一个函数的本机分辨率和目标像素大小。对于我们的测试集,我们注意到性能从30 cm分辨率下的平均精度(mAP) = 0.53下降到4.8 m分辨率下的mAP = 0.11。从30厘米图像到15厘米图像的超级分辨效果最好;mAP改进了13 - 36%。对于较粗的分辨率而言,超级分辨率的好处要小一些,但仍然可以在性能上提供小的改进。

00
领券