摘要 因果特征选择算法(也称为马尔科夫边界发现)学习目标变量的马尔科夫边界,选择与目标存在因果关系的特征,具有比传统方法更好的可解释性和鲁棒性.文中对现有因果特征选择算法进行全面综述,分为单重马尔科夫边界发现算法和多重马尔科夫边界发现算法...传统的特征选择算法主要分为封装法、过滤法和嵌入法三类[7].封装法[8]为不同的特征子集训练一个学习器, 评估其在该特征子集上的表现, 决定所选特征子集.过滤法[9]使用一个评估函数, 为特征评分并选择分数较高的特征...16]证明类别变量的MB集合是特征选择的最优解.因此, 因果特征选择算法通常具有可靠的理论保证....[21], 该类算法存在的意义是:1)由于实际应用中多个等价的MB适应的特定学习模型是不同的, 多重MB可用于解释学习模型的多样性现象; 2)实际应用中可能存在多个等价的MB, 但并非所有MB都适合作为特征子集建立学习模型....例如, 当不同变量的获取成本可能不同时, 多重MB算法可用于探索较低获取成本但具有相似预测性的替代解决方案(特征子集).根据Statnikov等[21]的研究, 多重MB的本质原因是等价信息现象, 定义