首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

深度学习模型压缩与加速综述

目前在深度学习领域分类两个派别,一派为学院派,研究强大、复杂的模型网络和实验方法,为了追求更高的性能;另一派为工程派,旨在将算法更稳定、高效的落地在硬件平台上,效率是其追求的目标。复杂的模型固然具有更好的性能,但是高额的存储空间、计算资源消耗是使其难以有效的应用在各硬件平台上的重要原因。所以,卷积神经网络日益增长的深度和尺寸为深度学习在移动端的部署带来了巨大的挑战,深度学习模型压缩与加速成为了学术界和工业界都重点关注的研究领域之一。本文主要介绍深度学习模型压缩和加速算法的三个方向,分别为加速网络结构设计、模型裁剪与稀疏化、量化加速。

04
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于神经网络的偏微分方程求解器新突破:北大&字节研究成果入选Nature子刊

    近年来,基于神经网络的偏微分方程求解器在各领域均得到了广泛关注。其中,量子变分蒙特卡洛方法(NNVMC)在量子化学领域异军突起,对于一系列问题的解决展现出超越传统方法的精确度 [1, 2, 3, 4]。北京大学与字节跳动研究部门 ByteDance Research 联合开发的计算框架 Forward Laplacian 创新地利用 Laplace 算子前向传播计算,为 NNVMC 领域提供了十倍的加速,从而大幅降低计算成本,达成该领域多项 State of the Art,同时也助力该领域向更多的科学难题发起冲击。该工作以《A computational framework for neural network-based variational Monte Carlo with Forward Laplacian》为题的论文已发表于国际顶级期刊《Nature Machine Intelligence》,相关代码已开源。

    01

    AI芯片发展的前世今生

    现代电子产品和设备在诸如通信 、娱乐 、安全和 医疗保健等许多方面改善了我们的生活质量 ,这主要是因为现代微电子技术的发展极大地改变了人们的日常工作和互动方式。在过去几十年中 ,摩尔定 律一直是通过不断缩小芯片上的器件特征尺寸来提高计算能力 ,带来了电子产品诸如更高速度 、更低成本和更小功耗等优势。Gordon Moore 最初的观察是 芯片中的晶体管数量大约每 2 年增加 1 倍 ,David House 进一步预测 ,由于更多更快的晶体管 ,芯片性能将每 18 个月翻一番。虽然 Gordon Moore 的预测已经成功超过 50 年 ,但是今天的硅 CMOS 技术正在 接近其尺寸的基本物理极限,摩尔定律的延续性已经变得越来越具有挑战性。

    01

    图布局算法的发展

    图数据的可视化,核心在布局,而布局算法通常是按照一些特定的模型,将抽象数据进行具象展示,这一过程伴随大量的迭代计算,例如朴素的 FR 力导向算法其在计算斥力时的算法时间复杂度达到了 O(n 3 ),这在小规模数据量下可能并不会出现问题,但随着规模的不断增大,采用如此“高昂”计算复杂度的算法变得不能接受,所以,出现了许多针对算法时间复杂度进行改进的方法,需要说明的是,在这一阶段,数据集的规模仍未达到单机处理上限,例如 OpenOrd算法采用多线程并行来加速计算过程。随着数据规模的进一步扩大,图数据节点达到百万级别时,单机并行策略也变得无能为力,这时,分布式并行计算的方式为这种“大规模图数据”的处理提供了可能性。

    03
    领券