首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

聚合物2中的聚合物1.0组分

是指聚合物2中的一种组成部分,即聚合物1.0。聚合物是由许多重复单元组成的高分子化合物,可以通过化学反应将单体分子连接在一起形成长链状结构。聚合物1.0是聚合物2的一部分,它可能是聚合物2的主要组分或者其中的一个子组分。

聚合物1.0的分类取决于其化学结构和性质。常见的聚合物类型包括聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯等。每种聚合物都具有不同的特性和应用场景。

优势:

  1. 强度和耐用性:聚合物通常具有较高的强度和耐用性,可以用于制造各种结构和产品。
  2. 轻量化:相比金属材料,聚合物通常具有较低的密度,因此可以用于制造轻量化产品。
  3. 可塑性:聚合物可以通过加热和加压等工艺进行塑性变形,可以制造出各种形状和尺寸的产品。
  4. 耐腐蚀性:聚合物通常具有良好的耐腐蚀性,可以在恶劣环境下使用。
  5. 绝缘性能:聚合物通常具有良好的绝缘性能,可以用于电气和电子设备。

应用场景:

  1. 包装行业:聚合物常用于制造塑料袋、塑料瓶、塑料容器等包装材料。
  2. 汽车工业:聚合物可以用于制造汽车零部件,如塑料外壳、内饰件等。
  3. 建筑行业:聚合物可以用于制造建筑材料,如塑料管道、塑料地板等。
  4. 电子行业:聚合物可以用于制造电子产品外壳、电线电缆绝缘层等。
  5. 医疗行业:聚合物可以用于制造医疗器械、医用塑料制品等。

腾讯云相关产品和产品介绍链接地址:

  1. 云服务器(ECS):提供灵活可扩展的云服务器实例,满足不同规模和需求的应用场景。详细信息请参考:https://cloud.tencent.com/product/cvm
  2. 云数据库 MySQL 版(CDB):提供高可用、可扩展的云数据库服务,适用于各种规模的应用。详细信息请参考:https://cloud.tencent.com/product/cdb
  3. 人工智能平台(AI Lab):提供丰富的人工智能开发工具和服务,支持开发者构建和部署各种人工智能应用。详细信息请参考:https://cloud.tencent.com/product/ailab
  4. 物联网套件(IoT Suite):提供全面的物联网解决方案,帮助用户快速构建和管理物联网设备和应用。详细信息请参考:https://cloud.tencent.com/product/iot-suite
  5. 腾讯云存储(COS):提供安全可靠的云存储服务,适用于各种数据存储和管理需求。详细信息请参考:https://cloud.tencent.com/product/cos
  6. 腾讯云区块链服务(BCS):提供高性能、可扩展的区块链服务,支持企业级区块链应用开发和部署。详细信息请参考:https://cloud.tencent.com/product/bcs

请注意,以上仅为腾讯云相关产品的示例,其他云计算品牌商也提供类似的产品和服务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

【Cell】有关生物大分子凝聚体以及液液相分离的知识汇总(五)

该领域的一个主要挑战是拥有准确的指标,以确定一个特定的蛋白质或结构在细胞环境中确实是一个相分离的体。在某些条件下,当处于足够的浓度和/或人工缓冲条件时,许多蛋白质和RNA都能进行体外LLPS。此外,常见的情况是过度表达一个蛋白质,看到一个大的、球形的滴,并推断内源性表达的蛋白质也必须在较低的浓度下形成类似液体的滴,只是这些滴的大小低于光学显微镜的检测限制。然而,由于相分离需要越过一个饱和浓度,因此在解释过度表达数据时应谨慎。应该尽量找到除过度表达之外的其他指标,以支持一个区室确实是相分离的,而不仅仅是一个宏观的点状结构。

02

【Cancer Cell】生物分子凝聚体与肿瘤(完整版)

癌变的特征是多种细胞过程的失调,这些过程一直是详细的遗传学、生物化学和结构学研究的主题,但直到最近,才有证据显示许多这些过程发生在生物分子凝结体的背景下。凝结体是无膜的团体,通常由液液相分离形成,将具有相关功能的蛋白质和RNA分子隔离开来。来自凝结体研究的新见解预示着我们对癌症细胞失调机制的理解将发生深刻的变化。在这里,我们总结生物分子凝结体的关键特征,指出它们已经被暗示(或很可能被暗示)在致癌发生中的作用,描述癌症治疗药物的药动学可能会受到凝结体的极大影响,并讨论一些必须解决的问题,以进一步提高我们对癌症的理解和治疗。

02
  • 【RNA】万字综述:生命的起源于RNA?

    达尔文的断言:“目前关于生命起源的思考纯粹是废话”,现在已经不再成立。通过综合生命起源(OoL)研究,从其开始到最近的发现,重点关注(i)原生物化学合成的原理证明和(ii)古代RNA世界的分子遗迹,我们提供了科学对OoL和RNA世界假说的全面最新描述。基于这些观察,我们巩固了这样的共识:RNA在编码蛋白质和DNA基因组之前演化,因此生物圈从一个RNA核心开始,在RNA转录和DNA复制之前产生了大部分的翻译装置和相关RNA结构。这支持了这样的结论:OoL是一个渐进的化学演化过程,涉及一系列介于原生物化学和最后的普遍共同祖先(LUCA)之间的过渡形式,其中RNA起到了核心作用,沿着这条路径的许多事件及其相对发生顺序是已知的。这一综合性合成的本质还扩展了以前的描述和概念,并应有助于提出关于古代RNA世界和OoL的未来问题和实验。

    02

    【Science】ChromEMT揭示纳米尺度染色质组织方式

    在人体细胞中,2米长的DNA通过与组蛋白和其他蛋白质的组装,在细胞核中形成染色质结构、百万碱基的三维区域和染色体,这些结构决定了我们基因组的活动和遗传特性。长期以来的教科书模型认为,11纳米的DNA-核心核小体聚合物首先组装成30纳米的纤维,进一步折叠成120纳米的染色体线状结构,然后形成300到700纳米的染色单体,最终形成有丝分裂染色体。根据这个模型,沉默的异染色质通常被描述为30纳米和120纳米的纤维。这种分层折叠模型基于纯化DNA和核小体形成的体外结构,以及在去除其他组分后观察到的经渗透处理的细胞中的染色质纤维。不幸的是,迄今为止还没有一种方法能够通过完整细胞的大型3D体积清晰地可视化和重建DNA和染色质的超微结构。因此,仍然存在一个问题,即在间期细胞和有丝分裂染色体中,决定人类基因组压缩和功能的核内局部和整体的3D染色质结构是什么?

    01

    不怕不识货 就怕货比货——6大扫地机器人拆解对比

    扫地机器人的发明不得不说是懒人的福音,也是主妇们的好帮手,更为忙碌的人提供了快捷、方便、省时间的清洁方式。中国的小家电企业近年来有了不错的自主研发和生产能力,然而在扫地机领域我们还是看到了产品之间互相模仿与抄袭,有些产品甚至只换了个商标,摇身一变成为了另一款,清洁能力和覆盖率方面也让人担心。部分消费者对于购买扫地机也一直在犹豫,担心钱花出去了,却买回来一个玩具。中关村在线整合了市面上比较有实力的6个品牌,包括iRobot、科沃斯、neato、LG、福玛特和小狗,进行了全方位的视频横评,历时一个月,10项测试

    04

    【Nature 重磅】世界首例自愈合弹性半导体研制成功,智能仿生机器人获突破

    【新智元导读】斯坦福大学研究人员制备出一种可用于制作晶体管的弹性聚合物,这种聚合物在受损后能自我愈合。这是科学家第一次制作出弹性半导体,为新一代可穿戴设备开辟了道路,相关论文日前在 Nature 发表。两位从事软物质物理研究的科学家在 Nature 同期评论文章中表示,该研究是在让复杂有机电子表面模仿人类皮肤的发展中的一座里程碑。 通过将刚性半导体聚合物与较软的材料结合在一起,斯坦福大学的一组研究人员制作出了像人体皮肤一样可以拉伸、形成褶皱、自我愈合的半导体,能够用于可穿戴设备、电子皮肤乃至柔性机器人。 这

    06

    2018 Cell系列相变最强综述,未来已来,你在哪?

    Trends in Cell Biology (Cell系列综述, 2018 IF: 18.564)于2018年6月1日在线发表了Steven Boeynaems(PhD Biomedical sciences, Stanford University School of Medicine, 一作兼通讯)撰写的关于蛋白质相位分离综述一文《Protein Phase Separation: A New Phase in Cell Biology》。蛋白质相变做为细胞区室形成和调节生化反应的新思路而受到越来越多的关注,同时为神经退行性疾病中无膜细胞器生物合成和蛋白质聚集的研究提供了新的框架。该综述中,总结了近年来无膜细胞器的研究现状,相变的发生、发展、调控和在疾病治疗中的应用进行了探讨,并展望了未来几年相变领域的主要问题和挑战。内容丰富,见解前沿,值得相关领域的研究者细细品读。

    01

    Nat. Commun. | 核酸聚合物生成,机器学习来帮忙

    今天给大家介绍哈佛大学David R. Liu课题组在国际期刊nature communications上发表的核酸序列生成的文章《Generating experimentally unrelated target molecule-binding highly functionalized nucleic-acid polymers using machine learning》。虽然体外筛选是探索大范围序列空间的有效方法,但由于选择引起的序列收敛,以及有限的测序深度,使得序列的搜索空间仅局限在少数区域。为了解决该问题,作者提出结合湿实验和机器学习方式去探索未被湿实验检索的序列空间。该论文通过体外筛选,发现了与柔红霉素具有高亲和力(KD=5-65 nM)的高度侧链功能化的核酸聚合物(HFNAP)。然后利用该数据训练条件变分自编码器(CVAE)模型,生成了与柔红霉素(daunomycin)高度亲和(KD=9-26nM)且独特多样的HFNAP序列。该论文将体外筛选与机器学习模型耦合,直接生成活性变体,是一种新的发现功能性生物聚合物的方法。

    04

    Nature | AlphaFold 3 预测了所有生命分子的结构和相互作用

    AlphaFold 2的问世引发了蛋白质结构及其相互作用建模的革命,使得在蛋白质建模和设计领域有了广泛的应用。 Google DeepMind and Isomorphic Labs团队在5月8日Nature的最新论文“Accurate structure prediction of biomolecular interactions with AlphaFold 3”描述了最新推出的AlphaFold 3 模型,采用了一个大幅更新的基于扩散的架构,能够联合预测包括蛋白质、核酸、小分子、离子和修饰残基在内的复合物的结构。新的 AlphaFold 模型在许多先前专门工具上显著提高了准确性:在蛋白质-配体相互作用方面比最先进的对接工具准确得多,比核酸特异性预测器在蛋白质-核酸相互作用方面具有更高的准确性,比 AlphaFold-Multimer v2.3.在抗体-抗原预测准确性方面显著更高。这些结果表明,在单一统一的深度学习框架内实现生物分子空间的高准确建模是可能的。

    01

    CMU阵列:3D打印实现对大规模高密度电极阵列定制化

    微电极阵列在记录电生理活动方面发挥了巨大作用,是脑功能研究的重要手段。然而目前大多数微电极的应用都受制于覆盖范围、脆性和费用方面的局限性。来自卡耐基梅隆大学的研究团队最近开发了利用3D纳米颗粒打印方法定制微电极的方法,并且在活体记录方面取得了出色的结果。这种可定制的3D多电极设备具有高电极密度,最小的肉眼组织损伤和优秀的信噪比。最重要的,3D打印的定制方法允许灵活的电极重构,例如不同的个体柄长度和布局,降低了总体通道阻抗。这种有效的设备设计使得在整个大脑中有针对性地和大规模地记录电信号成为可能,该技术发表在《Science Advances》上。

    01

    石安华/武俊紫:一种基于茴香酸对羟基苯乙酯和3-丙烯酰胺基苯硼酸的新型葡萄糖响应纳米粒子能降低血糖和改善糖尿病肾病

    云南中医药大学石安华、云南中医药大学武俊紫、昆明医科大学边立功在国际学术刊物《Mater Today Bio》(IF:7.435)在线发表了一种以中药单体茴香酸对羟基苯乙酯(HPA)为缓释核心材料的新型葡萄糖敏感纳米系统p(AAPBA-b-HPA),将其装载胰岛素后制备成的纳米注射剂能够在降低血糖的同时,随着缓释材料HPA的降解发挥其药理活性,治疗糖尿病最常见的并发症之一糖尿病肾病。论文题目为“Novel glucose-responsive nanoparticles based onp-hydroxyphenethyl anisate and 3-acrylamidophenylboronic acid reduce bloodglucose and ameliorate diabetic nephropathy”(DOI:10.1016/j.mtbio.2021.100181)。这对于开发更多类型的中药缓释材料,有效提升葡萄糖敏感系统对糖尿病并发症的治疗带来突破。

    02

    【Cell】有关生物大分子凝聚体以及液液相分离的知识汇总(四)

    显然,细胞内凝聚物的物质性质可以有很大的变化。这些结构可以在连续体上呈现出高度流动和液态,也可以更粘稠、粘弹性或多孔固体或凝胶。这些变化的物质状态可能是由于凝聚过程中涉及的特定分子组分,以及液滴的时间和成熟度以及淬灭深度,即系统在两相范围内的深度所导致的。RNA的存在—无论是特定的还是非特定序列—都可以影响液滴的物质性质;然而,RNA是使液滴流动化还是固化,这取决于具体的条件和环境,可能是由于价态和静电效应的贡献。在几个环境中,已经证明,随着时间的推移,或者在促进稳定蛋白质相互作用的突变或阻止蛋白质与RNA结合的能力的突变下,液滴变得更像固体。此外,在更像凝胶的状态下,固态是否可逆是需要考虑的一个重要特性,因为不可逆性对生理学和病理学的可能影响非常重要。尽管关于可以在重组系统中检测到的物理状态的描述越来越多,但某一特定物质状态在细胞中的实际功能仍然不清楚。特定的粘度或粘弹性在进化过程中被选择的程度,或者是凝聚成分的紧急性质,并不一定为结构的功能调整,这还不清楚。因此,仍然很重要的是要表征和操纵液态或凝胶状的隔室的物质状态,最终的目标是理解物质状态与功能是否以及如何相关。

    01

    全球首个能“生长”出新身体的软体机器人!只需光和液体,受植物和真菌启发

    大数据文摘转载自机器人大讲堂 一根“管子”插着子弹头,在迷宫里不断伸长,寻找出路: 重点在于,这根“管子”是自己“生长”出来的,就像植物一样不断延长。 这是全球第一个能自己生长出新身体的机器人!没有刚性链条一节一节向上推,也没有一堆吹气塑料管。它只需要光和一种液体,就能像韭菜一样从尖端“长”出新身体来,一分钟能长12cm! 这项研究来自明尼苏达大学双城分校的科研团队,他们开发了这种前所未有的、使合成材料能够生长的新工艺。这种新方法将允许研究人员建造更强大的软机器人,可以在难以到达的地方、复杂的地形和人

    02

    世界上最长寿的泡泡:加点东西,生命延长到465天

    来源:机器之心本文共2200字,建议阅读5分钟和普通泡泡1分钟的短暂美丽相比,这个泡泡的生命足足延长了20万倍。 十多年前,科幻作家刘慈欣写过一个有趣的小故事。 故事的主人公是一个叫圆圆的小女孩,她的父母为改善大西北的生态环境奉献了整个青春,但由于供水成本过高,他们辛辛苦苦建立起来的城市——丝路市依然难逃废弃的命运。 圆圆本人的梦想则比较简单,她只想吹出一个大大的泡泡。对此,圆圆的爸爸忧心忡忡,因为他认为女儿追求的是美丽、新奇而虚幻的东西。长大之后,圆圆凭借自己学到的东西创立了一个资产数亿的公司,但她的梦想

    02

    3D打印出的这种“咖啡杯”状药丸,可定时定量发挥药效 | 黑科技

    目前,该技术正在测试阶段。 据悉,近日,MIT的工程师发明了一种新的3D制造方法,研究人员利用该方法制造一种新型装载药物的颗粒,结合该种颗粒,多剂量的药物或疫苗通过一次注射后,可以在体内按照药物需释放的时间周期释放药物。 据了解,新的颗粒类似于可以填充药物或疫苗的“微型咖啡杯”,装载完药物后就用盖子密封。其中,这种颗粒由与生物相容的PLGA聚合物制作,且医疗人员可以根据药物的扩散周期来设计该颗粒的降解时间。 那么研究团队是怎样制造这一“微型咖啡杯”颗粒的呢? 自然,研究人员会想到3D打印技术,但是无论从材料

    00

    Nano Lett:在脂质体腔中嵌入坚硬的纳米碗以提高脂质体稳定性

    用于肿瘤治疗的脂质体受到体内循环过程中药物泄漏的困扰。近日,Nano Letters在线发表了上海交通大学基础医学院的方超教授和University at Buffalo(State University of New York)的Jonathan F. Lovell教授合作开发的新方法,通过在脂质体腔中嵌入坚硬的纳米碗来增强活性负载的阿霉素脂质体(DOX)的稳定性。纳米碗嵌入的脂质体DOX(DOX @ NbLipo)能抵抗血浆蛋白和血流剪切力的影响,以防止药物泄漏。这种方法提高了肿瘤部位的药物递送,增强了抗肿瘤功效。与修饰脂质体表面和改善膜材组成以提高稳定性的方法相比,该方法为水溶性纳米脂质体腔设计了物理支持物。纳米碗脂质体的稳定化是一种简单有效的方法,可以改善载体的稳定性。

    04
    领券