首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

人工智能:智能优化算法

优化问题是指在满足一定条件下,在众多方案或参数值中寻找最优方案或参数值,以使得某个或多个功能指标达到最优,或使系统的某些性能指标达到最大值或最小值。优化问题广泛地存在于信号处理、图像处理、生产调度、任务分配、模式识别、自动控制和机械设计等众多领域。优化方法是一种以数学为基础,用于求解各种优化问题的应用技术。各种优化方法在上述领域得到了广泛应用,并且已经产生了巨大的经济效益和社会效益。实践证明,通过优化方法,能够提高系统效率,降低能耗,合理地利用资源,并且随着处理对象规模的增加,这种效果也会更加明显。 在电子、通信、计算机、自动化、机器人、经济学和管理学等众多学科中,不断地出现了许多复杂的组合优化问题。面对这些大型的优化问题,传统的优化方法(如牛顿法、单纯形法等)需要遍历整个搜索空间,无法在短时间内完成搜索,且容易产生搜索的“组合爆炸”。例如,许多工程优化问题,往往需要在复杂而庞大的搜索空间中寻找最优解或者准最优解。鉴于实际工程问题的复杂性、非线性、约束性以及建模困难等诸多特点,寻求高效的优化算法已成为相关学科的主要研究内容之一。 受到人类智能、生物群体社会性或自然现象规律的启发,人们发明了很多智能优化算法来解决上述复杂优化问题,主要包括:模仿自然界生物进化机制的遗传算法;通过群体内个体间的合作与竞争来优化搜索的差分进化算法;模拟生物免疫系统学习和认知功能的免疫算法;模拟蚂蚁集体寻径行为的蚁群算法;模拟鸟群和鱼群群体行为的粒子群算法;源于固体物质退火过程的模拟退火算法;模拟人类智力记忆过程的禁忌搜索算法;模拟动物神经网络行为特征的神经网络算法;等等。这些算法有个共同点,即都是通过模拟或揭示某些自然界的现象和过程或生物群体的智能行为而得到发展;在优化领域称它们为智能优化算法,它们具有简单、通用、便于并行处理等特点。 **

01

Heliyon | 基于小样本数据集开发的一个数据驱动模型并产生一个可解释的介电常数计算方程

近日,来自韩国延世大学融合生物技术与转化医学学院的卢敬泰(NO Kyoung Tai)教授指导的在读博士生毛家顺等在Cell旗下全学科新期刊Heliyon (JCR Q1,IF: 3.776)发表了一种用于预测工业领域中常见的用作有机溶剂的单一化合物的介电常数(DC)预测方法,据悉该方法能够仅根据小样本数据即可实现预测准确率达到95.6%的性能,尤其是使用传统方法在DC值介于50-180区间上预测较差的区域上实现了良好的预测性能,该方法不同于传统机器学习的单层分类器训练,而是模拟深度网络进行多层线性和非线性映射,从而有效提升了预测效果,在评估方面采用相关性指标而非传统的回归指标,但是在单层内又采用遗传算法进行单层分类器的自适应定向保留有效的变量和映射器(即将单个分类器看做一个映射器,而无须进行分类器调参),此种结合遗传算法、传统机器学习作为映射器、相关性指数作为预测目标的方法框架,即可解决在任何小样本数据集上实现可解释与高预测性能的平衡,为了提高模型的解释性,每一层均可查看是哪些变量提升了预测精度,以及最终通过最小生成树实现关键变量的最佳组合可视化,又反过来为我们在科学研究上寻找关键的一次、二次等非线性变量的构建上给与启发。最后,本文的思想方法的来源实际上是借鉴了kaggle中经常使用的stacking的思想,并且结合遗传算法来加速发现变量有效组合,使用DBSCAN来合并线性相关性强的变量,以减少变量的爆炸组合数。

03
领券