展开

关键词

苹果收购以色列人脸识别创业公司RealFace

据以列色新闻网站Calcalist报道,苹果本月收购了以色列创业公司RealFace,估计交易价值数百万美元。RealFace是一家人脸识别公司,被认为可以帮助苹果的产品实现人脸解锁。 位于特拉维夫的RealFace创立于2014年,第一个产品名为Pickeez的应用,可以利用RealFace面部识别技术,帮助用户从各种平台挑选最佳照片。 苹果目前已经在iOS 10上使用了一些面部识别功能来处理照片,而这次收购也被认为是苹果正在寻求把面部识别当成一种认证手段。 据报道,在苹果收购之前RealFace已经融资100万美元,有10名员工,客户分布在中国、以色列、欧洲和美国等地。 这也是苹果在以色列的第四次收购,此前几次是:苹果2011年收购了闪存制造商Anobit,2013年购买了3D传感器公司PrimeSense,2015年购买了相机科技公司LinX。

58550

人脸识别

降低计算强度 face_cascade = cv2.CascadeClassifier('d:\haarcascades\haarcascade_frontalface_alt.xml') # 探测人脸 # 根据训练的数据来对新图片进行识别的过程。 ,其他可以不写   scaleFactor= 1.01, #控制金字塔层数,通常范围1.01~1.5 参数越小,层数越多,结果越精确   minNeighbors = 1, #为5表示有5次重叠才认为人脸存在   minSize = (1,1),#寻找人脸的最小区域 ) # 处理人脸探测的结果 print ("{0}".format(len(faces))) for(x,y,w,h) in faces:

99310
  • 广告
    关闭

    人脸识别限时特惠,10万次资源包仅需9.9元!!

    基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、比对、搜索、验证、五官定位、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于OpenMV的人脸识别,支持人脸注册、人脸检测、人脸识别

    1061700625/OpenMV_Face_Recognition ''' >> author: SXF >> email: songxf1024@163.com >> description: 用LBP特征进行人脸识别 ,可进行人脸注册、人脸检测与人脸识别 Pin7高电平一次,触发人脸注册;默认低电平 UART1(Pin1)输出调试信息 UART3(Pin4)输出识别结果,当识别成功后,返回“Find It = 0: debug(res) return 1 def match(d0): # 人脸识别 dir_lists = os.listdir( ,但由于SD卡内无文件,无法匹配人脸 ? 按下F1按键,进入人脸注册模式,连续拍5张照存入SD卡(拍摄时绿灯快闪50ms,拍摄完绿灯闪1000ms) ? 再识别,可完成人脸识别(红灯闪1000ms)。

    1.1K30

    人脸识别

    1.人脸识别的难点 用户配合度 相似性 易变形 2.人脸识别的评测方法 LFW数据集(Labeled Faces in the wild):该数据库工有13233幅图像,其中5749个人,1680人有两幅及以上的图像 该数据库采集的是自然条件下人脸图片,目的是提高自然条件下人脸识别的精度。

    1.5K90

    小米新机背后的人脸识别解锁供应商,被我们找到了

    这3款分别拿Mac Pro、iPhone 7plus对标,但价格几乎都只是苹果产品的一半,甚至1/3。 首先是人脸识别解锁。锁屏时点亮屏幕,匹配面部数据,看一眼即可马上解锁,不受湿手或戴手套的影响。 人脸识别解锁已经算不上新技术了。在门禁、安防等诸多领域,人脸识别早已变成了习以为常的事情。 不过在手机应用方面,人脸识别解锁确实是新现象。在小米宣布推出前的一周,vivo在印度发布的V7+宣布开始应用人脸识别解锁。 另外值得期待的是,苹果新一代iPhone,据说也已经拿掉了“指纹识别”的模块组,新机将完全采用人脸识别的方案,今天凌晨的发布会,我们不妨拭目以待。 人脸识别解锁之外,小米此次AI的应用在于美颜。 因为新一代iPhone将采用的3D人脸识别解锁,和我们今天报道的2D人脸识别解锁,还是会有原理上的不同滴。

    1.2K60

    Android人脸识别识别人脸特征

    本文我们接着来看看,在完成了人脸注册之后我们该如何识别出用户的人脸特征,从而通过人脸识别获取用户信息。 人脸识别的全部流程集成在官方 Demo 的 DetecterActivity 文件中。 还是来了解几个概念 人脸追踪 FT 年龄检测 Age 性别检测 Gender 其中人脸追踪 FT 与人脸检测 FD 功能基本一致(甚至代码基本都是相同的),Age 引擎用于识别年龄,Gender 引擎用于识别性别 识别流程 整体上比人脸注册还要简单,官方提供了很好的封装供我们使用,我们来看看流程。 流程是这样的 提取图片中的人脸 → 与我们已经注册过得特征集合进行特征匹配 → 匹配程度最高的作为最终识别结果 这一过程是放在一个子线程中运行的,代码如下: //人脸识别线程 class FRAbsLoop

    2K30

    LBPH人脸识别

    cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.LBPHFaceRecognizer_create()#LBPH人脸识别 特征图像划分为一个个单元格时,每个单元格在水平方向上的像素个数 grid_y表示将LBP特征图像划分为一个个单元格时,每个单元格在垂直方向上的像素个数 threshold表示在预测时所使用的阈值,如果大于该阈值,那么没有识别到任何目标对象 ) src表示输入图像 labels表示标签 label, confidence=cv2.face_FaceRecognizer.predict(src) src表示输入图像 注意:置信度评分用来衡量识别结果与原有模型之间的距离

    7730

    树莓派人脸识别实际应用:人脸识别门禁

    在上一篇文章树莓派调用百度人脸识别API实现人脸识别,我们完成了树莓派人脸识别的基础环境配置,人脸识别功能也测试成功了,现在我们做一个小小的案例来实际应用一下,我们想树莓派人脸识别成功后,发送蓝牙串口数据给 import base64 import time import bluetooth from bluetooth_test import bt_open,servo_init,bt_close #百度人脸识别 : f = open('faceimage.jpg','rb') img = base64.b64encode(f.read()) return img #上传到百度api进行人脸检测 def go_api(image): result = client.search(str(image, 'utf-8'), IMAGE_TYPE, GROUP);#在百度云人脸库中寻找有没有匹配的人脸 f.close() return 1 if result['error_msg'] == 'pic not has face': print('检测不到人脸

    80010

    python人脸识别

    目录 1 读取图片 2 将图片灰度转换 3 修改图片尺寸 4 绘制矩形_圆 5 人脸检测 6 检测多张人脸 7 检测视频中的人脸 8 训练数据并人脸识别 8.1 训练数据 8.2 人脸识别 1 读取图片 8 训练数据并人脸识别 8.1 训练数据 import os import cv2 import sys from PIL import Image import numpy as np def getImageAndLabels face.LBPHFaceRecognizer_create() recognizer.train(faces,np.array(ids)) # 保存文件 recognizer.write('trainer.yml') 8.2 人脸识别 /trainer.yml') # 准备识别的图片 img = cv2.imread(r'E:/girl.jpg') # 将图片缩小至原来的1/2 height, width = img.shape[: (gray) for x, y, w, h in faces: cv2.rectangle(reSize, (x, y), (x+w, y+h), (0, 255, 0), 2) # 人脸识别

    38720

    LDA人脸识别

    cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.FisherFaceRecognizer_create()#人脸识别 predict_image) cv2.waitKey() cv2.destroyAllWindows() label= 1 confidence= 10647.989937693492 算法:LDA人脸识别是一种经典的线性学习方法 , num_components[, threshold]]) num_components表示使用Fisherfaces准则进行线性判别分析时保留的成分数量,默认值是0 threshold表示进行识别时所使用的阈值

    7910

    人脸识别demo

    process_this_frame for (top, right, bottom, left), name in zip(face_locations, face_names): # 将人脸面部信息画出来 'q'): break video_capture.release() cv2.destroyAllWindows() 需要的第三方库 face_recogniton是世界上最简单的人脸识别库了 你可以通过Python引用或者命令行的形式使用它,来管理和识别人脸,该软件包使用dlib中最先进的人脸识别深度学习算法,使得识别准确率在《Labled Faces in the world》测试基准下达到了 99.38%,它同时提供了一个叫face_recognition的命令行工具,以便你可以用命令行对一个文件夹中的图片进行识别操作。 代码部分 效果 识别成功 [在这里插入图片描述] [在这里插入图片描述] 识别失败 [在这里插入图片描述] 完整代码 # -*- coding: utf-8 -*- # @Time : 2019

    11430

    PCA人脸识别

    ,cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.EigenFaceRecognizer_create()#人脸识别 predict_image) cv2.waitKey() cv2.destroyAllWindows() label= 1 confidence= 19228.277485215305 算法:PCA人脸识别是将高维的人脸数据处理为低维数据后 (降维),再进行数据分析和处理,获取识别结果。 num_components[, threshold]]) num_components表示保留的分量个数,通常情况下,保留的分量个数为80 threshold表示在预测时所使用的阈值,如果大于该阈值,那么没有识别到任何目标对象

    7820

    Android 人脸识别人脸注册

    该项目基于讯飞SDK实现的人脸检测,使用face++的webapi实现的人脸注册以及人脸识别人脸识别,我们可以理解为从一个专门保存人脸特征值的数据集合中找到最匹配的一组特征值。 人脸识别 (FR引擎) 当检测出人脸时,对人脸进行识别,如果人脸特征集合中存在该人脸信息,读取出该人脸信息及人员信息。 第三步: 经过上述的两部,我们已经成功的从图片中识别到了人脸,并且将该人脸在图片中的位置获取到了,接下来我们要做的就是使用 FR 人脸识别引擎识别该位置人脸中的特征信息。 if (! ,并且将人脸特征信息保存到本地,这个数据将会用于人脸识别获取人员信息的流程。

    2.3K30

    深度 | 苹果博客解读iPhone上的人脸识别深度神经网络

    选自Apple 机器之心编译 参与:黄小天、刘晓坤 苹果首次将深度学习应用于人脸识别是在 iOS 10 上。 为了保护用户隐私,保证有效运行,苹果在开发这个框架的过程中克服了大量挑战。本文旨在探讨这些挑战,并介绍人脸识别算法。 简介 通过 CIDetector 类,苹果首先借助核心图像(Core Image)框架中的公共 API 公开了人脸识别技术。这个 API 同样也用在苹果 App 中,比如 Photos。 余文讨论了我们的算法——一种基于深度学习的人脸识别方法,以及我们如何成功地克服挑战取得了当前最佳的精确度。 用户们希望人脸检测能在处理他们的照片库进行面部识别的时候,或在拍摄照片后立即进行分析的时候,能够平滑地运行。他们不希望这个应用太耗电或拖慢系统运行的速度。苹果的移动设备都是多任务处理设备。

    780100

    苹果高管不屑:安卓手机的人脸识别技术很糟糕

    这位苹果高管谈到了iPhone X和人脸识别,以及增强现实技术和智能家居技术等话题。 关于iPhone X上的人脸识别,席勒解释说,相比安卓系统,苹果的最大的优势就是整个iOS系统的集成。 他指出,要替换Home键时,苹果还需要弄清楚很多事情,这包括Siri、苹果支付(Apple Pay)和指纹识别(Touch ID)功能。 他在采访中说道:“他们都很糟糕,他们不会在我们需要人脸识别的所有方式上工作。我们很清楚,这么多年,这个简单的Home键,最初只是让人们用于点击进入主屏幕的方式,后来它的功能逐渐增多。 席勒当然也提到了一些人对隐私问题的担忧,包括使用人脸识别系统,以及开发者对原深感摄像头(TrueDepth Camera)的访问权限。 他表示,苹果“非常努力”想要维持它与用户在如何处理个人信息方面建立的信任。席勒说:“没有任何人脸识别数据会被发送给第三方。所以,你注册Face?

    40500

    人脸识别技术优缺点,人脸识别技术的原理

    现如今,在案件侦破,小区门禁,手机解锁等等方面,我们都需要用到人脸识别技术,这项技术应用到了很多的场景当中,对于日常的生活来说也提供了不少的便利,下面我们就将为大家介绍人脸识别技术。 ,而且通过人脸识别技术,可以不易察觉,不会陷入被人伪装欺骗的地步。 虽然人脸识别技术的优点非常多,但是我们也需要注意到它的缺点,因为人类的脸部或多或少存在着一定的相似性,所以对于人脸的外形来说,它是很不稳定的,而且有些人脸识别技术还可能会导致信息的泄露。 二、人脸识别技术的原理 人脸识别识别技术的一种,主要是通过人类的面部特征来进行身份确认,在判断出是否存在人脸之后,就会开始检测脸部的位置和大小,根据检测出来的信息,就可以提出身份特征,然后和已知的人脸之间进行对此 人脸识别技术在现在的社会中已经越来越普遍了,我们也日常的生活中随处可见人脸识别技术,有些小区也是可以通过人脸识别技术来确定身份,不过我们在进行人脸识别的过程,也要多加注意保护自己的信息。

    86620

    人脸识别精度提升 | 基于Transformer的人脸识别(附源码)

    计算机视觉研究院专栏 作者:Edison_G 现阶段的人脸检测识别技术已经特别成熟,不管在什么领域都有特别成熟的应用,比如:无人超市、车站检测、犯人抓捕以及行迹追踪等应用。 所以人脸识别的精度还是需要进一步提升,那就要继续优化更好的人脸识别框架。 论文:https://arxiv.org/pdf/2103.14803.pdf ? 我们想知道Transformer是否可以用于人脸识别,以及它是否比cnns更好。 ? 因此,有研究者研究了Transformer模型在人脸识别中的性能。 在Attention Rollout技术的帮助下,研究者分析了Transformer模型(MS-Celeb-1M,ViT-P12S8)如何专注于人脸图像,并发现人脸Transformer模型如何像预期的那样关注人脸区域 随着遮挡面积的增加,人脸Transformer模型和ResNet100的识别性能得到了提高。

    91430

    人脸识别初探之人脸检测(一)

    还记的这篇OpenCV即时上手可学习可商用的项目 接下来准备把其中的代码公开,欢迎一起交流学习 人脸识别是个说小不小的工程,在完成这个项目之前,先把人脸检测熟悉一下。 人脸检测用到的函数如下: void detectMultiScale( InputArray image, CV_OUT std::vector<Rect ; namedWindow("display"); imshow("display", img); /*********************************** 1.加载人脸检测器 ******************************/ // 建立级联分类器 CascadeClassifier cascade; // 加载训练好的 人脸检测器(.xml) ='k') ; destroyWindow("display"); destroyWindow("face_detect"); return 0; } 效果如图: 打开相机进行人脸检测

    5830

    【深度学习】人脸检测与人脸识别

    基本概念 人脸是个人重要的生物特征,业界很早就对人脸图像处理技术进行了研究。人脸图像处理包括人脸检测、人脸识别人脸检索等。 人脸检测是在输入图像中检测人脸的位置、大小;人脸识别是对人脸图像身份进行确认,人脸识别通常会先对人脸进行检测定位,再进行识别人脸检索是根据输入的人脸图像,从图像库或视频库中检索包含该人脸的其它图像或视频 人脸检测与识别的应用 实名认证 人脸考勤 刷脸支付、刷脸检票 公共安全:罪犯抓捕、失踪人员寻找 3. 传统人脸检测与人脸识别方法 1)人脸检测 基于知识的人脸检测法。 该数据集包含有200K张人脸图片,人脸属性有40多种,主要用于人脸属性的识别。 5. 在LFW数据集上识别率达到97.25%,接近人类识别能力。 2)人脸对齐处理 和大多数模型一样,DeepFace采用基准点检测器指导对齐过程。

    22530

    相关产品

    • 检测工具

      检测工具

      检测工具是腾讯云为广大开发者、站长提供的一种免费检测工具服务,其中包括:域名检测工具 和苹果ATS检测工具。腾讯云将陆续提供更多实用检测工具,敬请期待……

    相关资讯

    热门标签

    扫码关注腾讯云开发者

    领取腾讯云代金券